针对深度Q网络(Deep Q Network,DQN)算法在求解路径规划问题时存在学习时间长、收敛速度慢的局限性,提出一种角度搜索(Angle Searching,AS)和DQN相结合的算法(Angle Searching-Deep Q Network,AS-DQN),通过规划搜索域,控制移动机器人的搜索方向,减少栅格节点的遍历,提高路径规划的效率。为加强移动机器人之间的协作能力,提出一种物联网信息融合技术(Internet Information Fusion Technology,IIFT)模型,能够将多个分散的局部环境信息整合为全局信息,指导移动机器人规划路径。仿真实验结果表明:与标准DQN算法相比,AS-DQN算法可以缩短移动机器人寻得到达目标点最优路径的时间,将IIFT模型与AS-DQN算法相结合路径规划效率更加显著。实体实验结果表明:AS-DQN算法能够应用于Turtlebot3无人车,并成功找到起点至目标点的最优路径。