兵工学报 ›› 2025, Vol. 46 ›› Issue (2): 240390-.doi: 10.12382/bgxb.2024.0390
• • 上一篇
张琪悦1, 刘彦1,2,3, 闫俊伯1,3,*(), 许迎亮1, 王百川4, 黄风雷1
收稿日期:
2024-05-20
上线日期:
2025-02-28
通讯作者:
基金资助:
ZHANG Qiyue1, LIU Yan1,2,3, YAN Junbo1,3,*(), XU Yingliang1, WANG Baichuan4, HUANG Fenglei1
Received:
2024-05-20
Online:
2025-02-28
摘要:
以典型建筑目标构件爆炸防护为背景,研究了不同强度超高性能纤维混凝土(UHPFRC)梁爆炸载荷作用下的毁伤效应。开展UHPFRC梁爆炸毁伤实验,获得纤维含量和纵筋类型对UHPFRC梁破坏模式和动态响应的影响规律,实验结果表明,增加纤维含量和使用高强钢筋可提高UHPFRC梁的抗弯能力;为进一步拓展毁伤效应研究,构建了爆炸载荷作用下UHPFRC梁有限元模型,采用单元方法从三个强度面、状态方程、剪胀、损伤演化和应变率效应等方面改进了K&C本构模型参数,通过准静态实验表明,改进的本构模型参数可以更准确描述UHPFRC的力学性质,并基于爆炸实验数据验证了有限元模型的正确性;最后,通过参数分析研究了混凝土强度、钢筋类型和炸药药量对UHPFRC梁爆炸毁伤效应的影响规律。
张琪悦, 刘彦, 闫俊伯, 许迎亮, 王百川, 黄风雷. 爆炸载荷作用下不同强度超高性能混凝土梁毁伤效应[J]. 兵工学报, 2025, 46(2): 240390-.
ZHANG Qiyue, LIU Yan, YAN Junbo, XU Yingliang, WANG Baichuan, HUANG Fenglei. Dynamic Response of UHPFRC Beams with Different Strengths under Blast Loading[J]. Acta Armamentarii, 2025, 46(2): 240390-.
试件 | 装药质 量/kg | 爆距/ m | 比例 距离/ (m·kg-1/3) | 纤维 体积 含量 | 钢筋 类型 | ||||
---|---|---|---|---|---|---|---|---|---|
UHPFRC-ϕ16 NSS-1.0% | 2.0 | 0.25 | 0.20 | 1.0% | NSS | ||||
UHPFRC-ϕ16 NSS-2.5% | 2.5% | ||||||||
UHPFRC-ϕ16 HSS-2.1% | 2.0 | 0.25 | 0.20 | 2.1% | HSS | ||||
UHPFRC-ϕ16 HSS-2.5% | 2.5 | 0.25 | 0.18 | 2.5% | |||||
UHPFRC-ϕ16 HSS-2.5% | 2.5% |
表1 实验工况
Table 1 Experimental conditions
试件 | 装药质 量/kg | 爆距/ m | 比例 距离/ (m·kg-1/3) | 纤维 体积 含量 | 钢筋 类型 | ||||
---|---|---|---|---|---|---|---|---|---|
UHPFRC-ϕ16 NSS-1.0% | 2.0 | 0.25 | 0.20 | 1.0% | NSS | ||||
UHPFRC-ϕ16 NSS-2.5% | 2.5% | ||||||||
UHPFRC-ϕ16 HSS-2.1% | 2.0 | 0.25 | 0.20 | 2.1% | HSS | ||||
UHPFRC-ϕ16 HSS-2.5% | 2.5 | 0.25 | 0.18 | 2.5% | |||||
UHPFRC-ϕ16 HSS-2.5% | 2.5% |
钢筋 | 屈服 应变 | 屈服应 力/MPa | 极限 应变 | 极限应 力/MPa | 断裂 应变 |
---|---|---|---|---|---|
ϕ16 NSS | 0.0021 | 413 | 0.16 | 518 | 0.22 |
ϕ16 HSS | 0.0031 | 617 | 0.15 | 793 | 0.167 |
表2 钢筋力学参数
Table 2 Mechanical parameters of steel reinforcement
钢筋 | 屈服 应变 | 屈服应 力/MPa | 极限 应变 | 极限应 力/MPa | 断裂 应变 |
---|---|---|---|---|---|
ϕ16 NSS | 0.0021 | 413 | 0.16 | 518 | 0.22 |
ϕ16 HSS | 0.0031 | 617 | 0.15 | 793 | 0.167 |
直径/mm | 长度/mm | 纵横比 | 密度/(g·cm-3) | 抗拉强度/MPa |
---|---|---|---|---|
0.2 | 13 | 65 | 7.8 | 2000 |
表3 钢纤维的特性
Table 3 Characteristics of steel fibers
直径/mm | 长度/mm | 纵横比 | 密度/(g·cm-3) | 抗拉强度/MPa |
---|---|---|---|---|
0.2 | 13 | 65 | 7.8 | 2000 |
试件 | M/kg | hm/m | Z/(m·kg-1/3) | δmax/mm | δres/mm | CL/mm | CH/mm | SL/mm | SH/mm |
---|---|---|---|---|---|---|---|---|---|
UHPFRC-ϕ16 NSS-1.0% | 2.0 | 0.25 | 0.198 | 79.13 | 55.44 | 310 | 155 | - | - |
UHPFRC-ϕ16 NSS-2.5% | 2.0 | 0.25 | 0.198 | 63.70 | 39.65 | 300 | 148 | - | - |
UHPFRC-ϕ16 HSS-2.1% | 2.0 | 0.25 | 0.198 | 64.50 | 48.80 | 125 | 176 | 526 | 51 |
UHPFRC-ϕ16 HSS-2.5% | 2.0 | 0.25 | 0.198 | 43.53 | 8.74 | 300 | 120 | - | - |
UHPFRC-ϕ16 HSS-2.5% | 2.5 | 0.20 | 0.147 | 54.19 | 1.90 | 320 | 125 | - | - |
表4 实验总体结果
Table 4 Overall experimental results
试件 | M/kg | hm/m | Z/(m·kg-1/3) | δmax/mm | δres/mm | CL/mm | CH/mm | SL/mm | SH/mm |
---|---|---|---|---|---|---|---|---|---|
UHPFRC-ϕ16 NSS-1.0% | 2.0 | 0.25 | 0.198 | 79.13 | 55.44 | 310 | 155 | - | - |
UHPFRC-ϕ16 NSS-2.5% | 2.0 | 0.25 | 0.198 | 63.70 | 39.65 | 300 | 148 | - | - |
UHPFRC-ϕ16 HSS-2.1% | 2.0 | 0.25 | 0.198 | 64.50 | 48.80 | 125 | 176 | 526 | 51 |
UHPFRC-ϕ16 HSS-2.5% | 2.0 | 0.25 | 0.198 | 43.53 | 8.74 | 300 | 120 | - | - |
UHPFRC-ϕ16 HSS-2.5% | 2.5 | 0.20 | 0.147 | 54.19 | 1.90 | 320 | 125 | - | - |
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
μi | 0 | -0.0053 | -0.0101 | -0.0305 | -0.0513 | -0.0726 | -0.0943 | -0.120 | -0.174 | -0.208 |
Ki/GPa | 30 | 30 | 30.13 | 35.97 | 40.89 | 45.94 | 51.07 | 57.16 | 69 | 69 |
Pi/GPa | 0 | 0.159 | 0.300 | 0.901 | 1.514 | 2.141 | 2.780 | 3.537 | 5.164 | 6.973 |
表5 UHPFRC的EOS输入参数
Table 5 EOS input parameters of UHPFRC m-s-kg Pa
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
μi | 0 | -0.0053 | -0.0101 | -0.0305 | -0.0513 | -0.0726 | -0.0943 | -0.120 | -0.174 | -0.208 |
Ki/GPa | 30 | 30 | 30.13 | 35.97 | 40.89 | 45.94 | 51.07 | 57.16 | 69 | 69 |
Pi/GPa | 0 | 0.159 | 0.300 | 0.901 | 1.514 | 2.141 | 2.780 | 3.537 | 5.164 | 6.973 |
参数 | 值 | 参数 | 值 | 参数 | 值 | 参数 | 值 |
---|---|---|---|---|---|---|---|
RO/kg·m3 | 2470 | UCF | 1.45×10-4 | λ10 | 6.20×10-4 | η07 | 0.80 |
PR | 0.23 | LCRATE | 1 | λ11 | 9.00×10-4 | η08 | 0.60 |
FT/Pa | 见 | LOCWID/m | 0.045 | λ12 | 5.00×10-3 | η09 | 0.50 |
A0/Pa | 0.19256fc | NPTS | 13 | λ13 | 10 | η10 | 0.40 |
A1 | 0.36 | λ01 | 0 | B3 | 1.15 | η11 | 0.30 |
A2/Pa-1 | λ02 | 4.40×10-5 | A0Y/Pa | 0.1053fc | η12 | 0.07 | |
B1 | 0.55 | λ03 | 7.00×10-5 | A1Y | 0.23 | η13 | 0 |
OMEGA | 0.75 | λ04 | 7.48×10-5 | η01 | 0 | A2F/Pa-1 | |
A1F | 0.42 | λ05 | 9.50×10-5 | η02 | 0.85 | A2Y/Pa-1 | |
Sλ | 100 | λ06 | 1.20×10-4 | η03 | 0.98 | ||
NOUT | 2 | λ07 | 2.10×10-4 | η04 | 0.99 | ||
EDROP | 1 | λ08 | 3.40×10-4 | η05 | 1.00 | ||
RSIZE | 39.37 | λ09 | 4.56×10-4 | η06 | 0.98 |
表6 UHPFRC的K&C模型输入参数
Table 6 K&C model input parameters of 135MPa UHPFRC m-s kg Pa
参数 | 值 | 参数 | 值 | 参数 | 值 | 参数 | 值 |
---|---|---|---|---|---|---|---|
RO/kg·m3 | 2470 | UCF | 1.45×10-4 | λ10 | 6.20×10-4 | η07 | 0.80 |
PR | 0.23 | LCRATE | 1 | λ11 | 9.00×10-4 | η08 | 0.60 |
FT/Pa | 见 | LOCWID/m | 0.045 | λ12 | 5.00×10-3 | η09 | 0.50 |
A0/Pa | 0.19256fc | NPTS | 13 | λ13 | 10 | η10 | 0.40 |
A1 | 0.36 | λ01 | 0 | B3 | 1.15 | η11 | 0.30 |
A2/Pa-1 | λ02 | 4.40×10-5 | A0Y/Pa | 0.1053fc | η12 | 0.07 | |
B1 | 0.55 | λ03 | 7.00×10-5 | A1Y | 0.23 | η13 | 0 |
OMEGA | 0.75 | λ04 | 7.48×10-5 | η01 | 0 | A2F/Pa-1 | |
A1F | 0.42 | λ05 | 9.50×10-5 | η02 | 0.85 | A2Y/Pa-1 | |
Sλ | 100 | λ06 | 1.20×10-4 | η03 | 0.98 | ||
NOUT | 2 | λ07 | 2.10×10-4 | η04 | 0.99 | ||
EDROP | 1 | λ08 | 3.40×10-4 | η05 | 1.00 | ||
RSIZE | 39.37 | λ09 | 4.56×10-4 | η06 | 0.98 |
抗压强度/MPa | a0 | a1 | a2 | a1f | a2f | a0y | a1y | a2y | FT |
---|---|---|---|---|---|---|---|---|---|
105 | 20.22 | 0.36 | 1.495×10-3 | 0.42 | 9.752×10-4 | 11.06 | 0.23 | 5.105×10-3 | 7.00e6 |
121 | 23.30 | 0.36 | 1.298×10-3 | 0.42 | 8.463×10-4 | 12.74 | 0.23 | 4.430×10-3 | 8.07e6 |
135 | 25.30 | 0.36 | 1.163×10-3 | 0.42 | 7.585×10-4 | 14.22 | 0.23 | 3.970×10-3 | 9.00e6 |
150 | 28.88 | 0.36 | 1.047×10-3 | 0.42 | 6.827×10-4 | 15.80 | 0.23 | 3.573×10-3 | 1.00e7 |
165 | 31.77 | 0.36 | 9.515×10-4 | 0.42 | 6.206×10-4 | 17.38 | 0.23 | 3.249×10-3 | 1.10e7 |
180 | 34.66 | 0.36 | 8.722×10-4 | 0.42 | 5.689×10-4 | 18.95 | 0.23 | 2.978×10-3 | 1.20e7 |
200 | 38.51 | 0.36 | 7.850×10-4 | 0.42 | 5.12×10-4 | 21.06 | 0.23 | 2.680×10-3 | 1.33e7 |
220 | 42.36 | 0.36 | 7.136×10-4 | 0.42 | 4.655×10-4 | 23.17 | 0.23 | 2.436×10-3 | 1.47e7 |
表7 不同强度UHPFRC的K&C模型输入的强度面参数和单轴抗拉强度
Table 7 K&C model input parameters and uniaxial tensile strengths.of UHPFRC beams with different strengths m-s-kg Pa
抗压强度/MPa | a0 | a1 | a2 | a1f | a2f | a0y | a1y | a2y | FT |
---|---|---|---|---|---|---|---|---|---|
105 | 20.22 | 0.36 | 1.495×10-3 | 0.42 | 9.752×10-4 | 11.06 | 0.23 | 5.105×10-3 | 7.00e6 |
121 | 23.30 | 0.36 | 1.298×10-3 | 0.42 | 8.463×10-4 | 12.74 | 0.23 | 4.430×10-3 | 8.07e6 |
135 | 25.30 | 0.36 | 1.163×10-3 | 0.42 | 7.585×10-4 | 14.22 | 0.23 | 3.970×10-3 | 9.00e6 |
150 | 28.88 | 0.36 | 1.047×10-3 | 0.42 | 6.827×10-4 | 15.80 | 0.23 | 3.573×10-3 | 1.00e7 |
165 | 31.77 | 0.36 | 9.515×10-4 | 0.42 | 6.206×10-4 | 17.38 | 0.23 | 3.249×10-3 | 1.10e7 |
180 | 34.66 | 0.36 | 8.722×10-4 | 0.42 | 5.689×10-4 | 18.95 | 0.23 | 2.978×10-3 | 1.20e7 |
200 | 38.51 | 0.36 | 7.850×10-4 | 0.42 | 5.12×10-4 | 21.06 | 0.23 | 2.680×10-3 | 1.33e7 |
220 | 42.36 | 0.36 | 7.136×10-4 | 0.42 | 4.655×10-4 | 23.17 | 0.23 | 2.436×10-3 | 1.47e7 |
ρe/(g·cm-3) | D/(cm·μs-1) | PCJ/MPa | A/MPa | B/MPa | R1 | R2 | ω | e0/MPa |
---|---|---|---|---|---|---|---|---|
1.63 | 6.93 | 0.21 | 3.712 | 0.03231 | 4.15 | 0.95 | 0.30 | 0.07 |
表8 TNT炸药的材料参数
Table 8 Material parameters of TNT explosives
ρe/(g·cm-3) | D/(cm·μs-1) | PCJ/MPa | A/MPa | B/MPa | R1 | R2 | ω | e0/MPa |
---|---|---|---|---|---|---|---|---|
1.63 | 6.93 | 0.21 | 3.712 | 0.03231 | 4.15 | 0.95 | 0.30 | 0.07 |
ρe/(g·cm-3) | C0 | C1 | C2 | C3 | C4 | C5 | C6 | E0/MPa |
---|---|---|---|---|---|---|---|---|
1.23 | 0 | 0 | 0 | 0 | 0 | 0.4 | 0.4 | 2.58×10-6 |
表9 空气的材料参数
Table 9 Material parameters of air
ρe/(g·cm-3) | C0 | C1 | C2 | C3 | C4 | C5 | C6 | E0/MPa |
---|---|---|---|---|---|---|---|---|
1.23 | 0 | 0 | 0 | 0 | 0 | 0.4 | 0.4 | 2.58×10-6 |
梁 | 数值模拟最大 位移/mm | 实验最大位 移/mm | 偏差/ % |
---|---|---|---|
UHPFRC-ϕ16 NSS-2.5% | 63.00 | 63.70 | 1.1 |
UHPFRC-ϕ16 NSS-1.0% | 84.16 | 79.13 | 6.4 |
UHPFRC-ϕ16 HSS-2.5% | 42.36 | 43.53 | 2.7 |
UHPFRC-ϕ16 HSS-2.1% | 65.30 | 64.50 | 1.2 |
表10 数值模拟与实验结果的最大位移偏差
Table 10 Maximum displacement deviation between numerical simulated and experimental results
梁 | 数值模拟最大 位移/mm | 实验最大位 移/mm | 偏差/ % |
---|---|---|---|
UHPFRC-ϕ16 NSS-2.5% | 63.00 | 63.70 | 1.1 |
UHPFRC-ϕ16 NSS-1.0% | 84.16 | 79.13 | 6.4 |
UHPFRC-ϕ16 HSS-2.5% | 42.36 | 43.53 | 2.7 |
UHPFRC-ϕ16 HSS-2.1% | 65.30 | 64.50 | 1.2 |
梁 | 损伤区域 直径/mm | 损伤区域 深度/mm |
---|---|---|
UHPFRC-ϕ16 NSS-105MPa | - | - |
UHPFRC-ϕ16 NSS-121MPa | 580 | 195 |
UHPFRC-ϕ16 NSS-135MPa | 320 | 150 |
UHPFRC-ϕ16 NSS-150MPa | 270 | 143 |
UHPFRC-ϕ16 NSS-180MPa | 240 | 138 |
表11 50ms时间3kg TNT爆炸下,不同强度UHPFRC梁的损伤模式比较
Table 11 Comparison of damage modes of UHPFRC beams with different strengths under a 3kgTNT explosion at 50ms
梁 | 损伤区域 直径/mm | 损伤区域 深度/mm |
---|---|---|
UHPFRC-ϕ16 NSS-105MPa | - | - |
UHPFRC-ϕ16 NSS-121MPa | 580 | 195 |
UHPFRC-ϕ16 NSS-135MPa | 320 | 150 |
UHPFRC-ϕ16 NSS-150MPa | 270 | 143 |
UHPFRC-ϕ16 NSS-180MPa | 240 | 138 |
图19 不同药量下不同钢筋类型UHPFRC梁的最大位移
Fig.19 Maximum displacements of UHPFRC beams with different steel reinforcement types under different dosages of explosives
梁 | 损伤区域 直径/mm | 损伤区域 深度/mm |
---|---|---|
UHPFRC-ϕ16 NSS-135MPa | 190 | 83 |
UHPFRC-ϕ16 HSS-135MPa | 180 | 48 |
UHPFRC-ϕ16 MMFX -135MPa | 180 | 9 |
表12 不同钢筋类型135MPa UHPFRC梁的损伤模式比较(50ms时间1.5kg TNT爆炸下)
Table 12 Comparison of damage modes of 135MPa UHPFRC beams with different steel reinforcement types under 1.5kg TNT explosion at 50ms
梁 | 损伤区域 直径/mm | 损伤区域 深度/mm |
---|---|---|
UHPFRC-ϕ16 NSS-135MPa | 190 | 83 |
UHPFRC-ϕ16 HSS-135MPa | 180 | 48 |
UHPFRC-ϕ16 MMFX -135MPa | 180 | 9 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
匡志平, 陈少群. 混凝土K&C 模型材料参数分析与模拟[J]. 力学季刊, 2015, 36(3):517-526.
|
|
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
混凝土力学性能试验方法:GB/T 50010—2010[S]. 北京: 中国标准出版社, 2014.
|
Test method for mechanical properties of concrete:GB/T 50010—2010[S]. Beijing: China Standard Publishing House, 2014. (in Chinese)
|
|
[21] |
普通混凝土力学性能试验方法标准:GB/T 50081—2002[S]. 北京: 中国标准出版社, 2003.
|
Standard for testing methods for mechanical properties of ordinary concrete:GB/T 50081—2002[S]. Beijing: China Standard Publishing House, 2003. (in Chinese)
|
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
徐世烺, 吴平, 李庆华, 等. 超高韧性水泥基复合材料K&C 模型参数确定[J]. 建筑结构学报, 2020, 43(6):233-244.
|
|
|
[30] |
尹华伟, 蒋轲, 张料, 等. 钢纤维混凝土板在冲击与爆炸荷载下的K&C模型[J]. 高压物理学报, 2020, 34(3):134-144.
|
|
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
LS-DYNA© Keyword user’s manual volume II material models[EB/OL]. California,USA:LIVERMORE SOFTWARE TECHNOLOGY (LST), 2014[2024-05-21]. https://ftp.lstc.com/anonymous/outgoing/jday/manuals/LS-DYNA_manual_Vol_II_R7.1.pdf
|
[41] |
|
[42] |
|
[43] |
|
[44] |
闫俊伯, 刘彦, 李亚飞. 不同强度混凝土及钢筋对钢筋混凝土柱抗爆性能的影响[J]. 兵工学报, 2021, 42(3):530-544.
doi: 10.3969/j.issn.1000-1093.2021.03.009 |
|
[1] | 乔博阳, 谷恭天, 王成, 宋诗祥, 高扬. 天然气爆炸载荷作用下钢筋混凝土板毁伤试验研究[J]. 兵工学报, 2024, 45(7): 2393-2403. |
[2] | 刘保华, 徐文龙, 王成, 杨同会, 葛萌. 接触爆炸下聚脲涂层增强钢板的抗爆性能[J]. 兵工学报, 2024, 45(5): 1637-1647. |
[3] | 姚梦雷, 侯海量, 李典, 谢悦. 舰船舱内爆炸载荷下Y形夹层板动响应及抗爆性能影响因素[J]. 兵工学报, 2024, 45(3): 837-854. |
[4] | 周广盼, 王荣, 王明洋, 丁建国, 张国凯. 涂覆聚脲混凝土自锚式悬索桥主梁抗爆性能试验与数值模拟[J]. 兵工学报, 2023, 44(S1): 9-25. |
[5] | 王佳, 尹建平, 李旭东, 伊建亚, 王志军. 基于量纲分析法的钢筋混凝土柱体缩比模型的构建[J]. 兵工学报, 2023, 44(S1): 189-195. |
[6] | 杨光瑞, 汪维, 杨建超, 汪剑辉, 王幸. POZD涂覆波纹钢加固钢筋混凝土板抗爆性能[J]. 兵工学报, 2023, 44(5): 1374-1383. |
[7] | 沈超, 张磊, 周章涛, 刘建湖. 水下近距和接触爆炸载荷作用下板架结构动态响应机理[J]. 兵工学报, 2023, 44(4): 1050-1061. |
[8] | 刘巍, 马宏昊, 徐钦明, 姚象洋, 赵勇, 杨科, 杨辉, 沈兆武. 浅埋炸药加载下含空穴泡沫铝夹芯板动态响应机制[J]. 兵工学报, 2023, 44(12): 3613-3621. |
[9] | 宁建国, 杨帅, 李玉辉, 许香照. 低温/常温养护下混凝土的本构模型和抗爆试验[J]. 兵工学报, 2023, 44(10): 2932-2943. |
[10] | 王成, 杨靖宇, 迟力源, 王万里, 陈泰年. 钢筋混凝土端面重墙结构的抗爆性能规律[J]. 兵工学报, 2022, 43(1): 131-139. |
[11] | 李明星, 张明, 陈四春, 李锴, 刘状, 袁溪. 爆炸载荷冲击下假人下肢的材料参数识别和修正方法[J]. 兵工学报, 2021, 42(9): 1895-1901. |
[12] | 闫俊伯, 刘彦, 李亚飞, 徐梓熙, 黄风雷. 不同强度混凝土及钢筋对钢筋混凝土柱抗爆性能的影响[J]. 兵工学报, 2021, 42(3): 530-544. |
[13] | 孔祥韶, 况正, 郑成, 吴卫国. 舱室密闭空间中爆炸载荷燃烧增强效应试验研究[J]. 兵工学报, 2020, 41(1): 75-85. |
[14] | 禹富有, 董新龙, 俞鑫炉, 付应乾. 不同填塞装药下金属柱壳断裂特性的实验研究[J]. 兵工学报, 2019, 40(7): 1418-1424. |
[15] | 孔祥韶, 徐敬博, 徐维铮, 郑成, 吴卫国. 舱室密闭空间中爆炸载荷后燃烧效应数值计算研究[J]. 兵工学报, 2019, 40(4): 799-806. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||