欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (2): 240113-.doi: 10.12382/bgxb.2024.0113

• • 上一篇    下一篇

数据和知识双驱动的空中集群目标作战意图识别

李洋军, 黄琦龙*(), 杨力, 陈旭   

  1. 南京理工大学 自动化学院, 江苏 南京 210094
  • 收稿日期:2024-02-18 上线日期:2025-02-28
  • 通讯作者:
  • 基金资助:
    国家自然科学基金(62103191); 国家自然科学基金(U21B2003); 中央高校基本科研业务费专项资金(30924010928)

Combat Intention Recognition of Air Cluster Targets Driven by Data and Knowledge

LI Yangjun, HUANG Qilong*(), YANG Li, CHEN Xu   

  1. School of Automation, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • Received:2024-02-18 Online:2025-02-28

摘要:

针对集群目标空间特性多元时变和传统数据驱动模型过分依赖经验样本等问题,提出一种针对集群目标的数据和知识双驱动作战意图识别方法。考虑集群目标空间形态等编队特点,构造基于目标编队外包络线和最小外接矩形的集群特征向量,增强敌情数据的特征表达效果;建立基于专家经验的知识模型和结合注意力机制的长短期记忆(Long short-term memory,LSTM)网络模型,基于专家经验的知识模型根据约束规则生成意图预识别向量,LSTM模型预测输出意图概率分布的残差;利用一种可学习的残差估计器结构,自适应调整双模型的融合比率,并设计多目标损失函数控制双模型的影响权重,最终通过双模型的融合有效克服传统数据模型高精度和数据样本不足的矛盾。实验表明,提出方法的精度相比LSTM和Attention-LSTM分别提升约5.34%和4.98%,且对样本量的依赖性显著低于传统数据驱动方法。

关键词: 集群目标, 作战意图, 数据驱动, 知识驱动, 注意力机制

Abstract:

Aiming at the diverse spatiotemporal characteristics of cluster targets and the excessive reliance of traditional data driven models on empirical samples,this paper proposes an algorithm for combat intent recognition driven by both data and knowledge.A cluster feature vector based on the virtual envelope and minimum bounding rectangle of target formation are constructed to enhance the feature expression of enemy situation data,which takes the cluster characteristics,such as the spatial form of cluster targets,into account.A knowledge model based on military expert experience and a long short-term memory (LSTM) network model with attention mechanism are established then.The knowledge model generates the intent pre-recognition vectors based on constraint rule,while the LSTM network model predicts the residual of intent probability distribution.The fusion ratio of both models is adaptively adjusted by utilizing a learnable residual estimator structure.A multi-objective loss function is designed to control the influence weights of the dual models.Ultimately,the fusion of the dual models overcomes the contradiction between the high accuracy of traditional data models and the insufficient data samples.Experimental results indicate that the proposed method improves the recognition accuracy to about 5.34% and 4.98% compared to LSTM and Attention-LSTM,respectively,and has significantly lower dependence on sample size than traditional data-driven methods.

Key words: cluster targets, combat intent, data driving, knowledge driving, attention mechanism