欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (2): 240265-.doi: 10.12382/bgxb.2024.0265

• • 上一篇    下一篇

基于角度搜索和深度Q网络的移动机器人路径规划算法

李宗刚1,2,*(), 韩森1,2, 陈引娟1,2, 宁小刚1,2   

  1. 1 兰州交通大学 机电工程学院, 甘肃 兰州 730070
    2 兰州交通大学 机器人研究所, 甘肃 兰州 730070
  • 收稿日期:2024-04-09 上线日期:2025-02-28
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(61663020); 甘肃省高等学校产业支撑计划项目(2022CYZC-33)

A Path Planning Algorithm for Mobile Robots Based on Angle Searching and Deep Q-Network

LI Zonggang1,2,*(), HAN Sen1,2, CHEN Yinjuan1,2, NING Xiaogang1,2   

  1. 1 School of Mechanical and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
    2 Robotics Institute, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Received:2024-04-09 Online:2025-02-28

摘要:

针对深度Q网络(Deep Q Network,DQN)算法在求解路径规划问题时存在学习时间长、收敛速度慢的局限性,提出一种角度搜索(Angle Searching,AS)和DQN相结合的算法(Angle Searching-Deep Q Network,AS-DQN),通过规划搜索域,控制移动机器人的搜索方向,减少栅格节点的遍历,提高路径规划的效率。为加强移动机器人之间的协作能力,提出一种物联网信息融合技术(Internet Information Fusion Technology,IIFT)模型,能够将多个分散的局部环境信息整合为全局信息,指导移动机器人规划路径。仿真实验结果表明:与标准DQN算法相比,AS-DQN算法可以缩短移动机器人寻得到达目标点最优路径的时间,将IIFT模型与AS-DQN算法相结合路径规划效率更加显著。实体实验结果表明:AS-DQN算法能够应用于Turtlebot3无人车,并成功找到起点至目标点的最优路径。

关键词: 移动机器人, 路径规划, 深度Q网络, 角度搜索策略, 物联网信息融合技术

Abstract:

deep Q-network algorithm has the limitations of long learning time and slow convergence speed when solving path planning problems.A path planning algorithm that combines angle search strategy and deep Q-network,called AS-DQN algorithm is proposed.A search domain is set to control the search direction of mobile robot and reduce the traversal of grid nodes,thus improving the efficiency of path planning.In order to enhance the collaboration ability of mobile robots,an internet of things information fusion technology model is proposed,which can integrate multiple scattered local environmental informations into a global information to guide multi-robot path planning.Simulation experimental results show that AS-DQN algorithm can take less time to find the optimal path to the target point for mobile robots compared with the standard DQN algorithm.Combining IIFT model with AS-DQN algorithm for path planning is more efficient.The physical experimental results show that AS-DQN algorithm can be applied to the Turtlebot3 unmanned vehicle and successfully finds the optimal path from the starting point to the target point.

Key words: mobile robot, path planning, deep Q-network, angle searching strategy, internet of things information fusion technology

中图分类号: