[1] |
张凯歌, 卢志刚, 聂天常, 等. 面向无人装备的智能边缘计算软技术分析[J]. 兵工学报, 2023, 44(9):2611-2621.
doi: 10.12382/bgxb.2022.1166
|
|
ZHANG K G, LU Z G, NIE T C, et al. Analysis of soft intelligent edge computing technologies for unmanned systems[J]. Acta Armamentarii, 2023, 44(9):2611-2621. (in Chinese)
doi: 10.12382/bgxb.2022.1166
|
[2] |
陈龙, 张建林, 彭昊, 等. 多尺度注意力与领域自适应的小样本图像识别[J]. 光电工程, 2023, 50(4):60-73.
|
|
CHEN L, ZHANG J L, PENG H, et al. Few-shot image classification via multi-scale attention and domain adaptation[J]. Opto-Electronic Engineering, 2023, 50(4):60-73. (in Chinese)
|
[3] |
程旭, 宋晨, 史金钢, 等. 基于深度学习的通用目标检测研究综述[J]. 电子学报, 2021, 49(7):1428-1438.
doi: 10.12263/DZXB.20200570
|
|
CHENG X, SONG C, SHI J G, et al. A survey of generic object detection methods based on deep learning[J]. Acta Electonica Sinica, 2021, 49(7):1428-1438. (in Chinese)
|
[4] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
|
[5] |
FANG S, ZHANG B, HU J. Improved mask R-CNN multi-target detection and segmentation for autonomous driving in complex scenes[J]. Sensors, 2023, 23(8):3853.
|
[6] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified,Real-Time object detection[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,NV,US: IEEE, 2016:779-788.
|
[7] |
于博文, 吕明. 改进的YOLOv3算法及其在军事目标检测中的应用[J]. 兵工学报, 2022, 43(2):345-354.
doi: 10.3969/j.issn.1000-1093.2022.02.012
|
|
YU B W, LÜ M. Improved YOLOv3 algorithm and its application in military target detection[J]. Acta Armamentarii, 2022, 43(2):345-354. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2022.02.012
|
[8] |
熊光明, 罗震, 孙冬, 等. 基于红外相机和毫米波雷达融合的烟雾遮挡无人驾驶车辆目标检测与跟踪[J]. 兵工学报, 2024, 45(3):893-906.
doi: 10.12382/bgxb.2022.0602
|
|
XIONG G M, LUO Z, SUN D, et al. Object detection and tracking for Unmanned Vehicles based on fusion of infrared camera and MMW radar in smoke-obscured environment[J]. Acta Armamentarii, 2024, 45(3):893-906. (in Chinese)
doi: 10.12382/bgxb.2022.0602
|
[9] |
SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2:Inverted residuals and linear bottlenecks[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Salt Lake City,UT,US: IEEE, 2018:4510-4520.
|
[10] |
KONG L R, WANG J Z, ZHAO P. YOLO-G:a lightweight network model for improving the performance of military targets detection[J]. IEEE Access, 2022, 10:55546-55555.
|
[11] |
WENG K, CHU X, XU X, et al. Efficientrep:an efficient Repvgg-style ConVnets with hardware-aware neural network design[J]. arxiv preprint arxiv:2302.00386, 2023.
|
[12] |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent advers arialnetworks[C]// Proceedings of the IEEE International Conference on Computer Vision.Venice, Italy: IEEE, 2017:2223-2232.
|
[13] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,NV, US: IEEE, 2016:770-778.
|
[14] |
刘飞, 高红艳, 卫泽刚, 等. 基于Res-Net深度特征的SAR图像目标识别方法[J]. 液晶与显示. 2021, 36(4):624-631.
|
|
LIU F, GAO L Y, WEI Z G, et al. SAR image target recognition method using based on Res-Net deep features[[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(4):624-631. (in Chinese)
|
[15] |
QING Y H, LIU W Y, FENG L Y, et al. Improved YOLO network for free-angle remote sensing target detection[J]. Remote Sensing, 2021, 13(11):2171.
|
[16] |
SUN S Q, CHENG Y, GAN Z, et al. Patient knowledge distillation for BERT model compression:arXiv:1908.09355[R/OL]. Ithaca,NY,US: Cornell University, 2019(2019-08-25). https://arxiv.org/abs/1908.09355
|
[17] |
SHEN M Y, MOLCHANOV P, YIN H X, et al. When to prune? a policy towards early structural pruning[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans,LA,US: IEEE, 2022:12237-12246.
|
[18] |
VADERA S, AMEEN S. Methods for pruning deep neural networks[J]. IEEE Access, 2022, 10:63280-63300.
|
[19] |
LUO J H, WU J, LIN W. Thinet:a filter level pruning method for deep neural network compression[C]// Proceedings of the IEEE International Conference on computer vision. Venice,Italy:IEEE, 2017:5058-5066.
|
[20] |
BA L J, CARUANA R. Do deep nets really need to be deep?[J]. Advances in neural information processing systems, 2014, 3:2654-2662.
|
[21] |
SHU C Y, LIU Y F, GAO J F, et al. Channel-wise knowledge distillation for dense prediction[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal,QC,Canada:IEEE, 2021:5311-5320.
|
[22] |
JI S Y, ZHANG Z Z, YING S H, et al. Kullback-Leibler divergence metric learning[J]. IEEE transactions on cybernetics, 2020, 52(4):2047-2058.
|
[23] |
ZHOU Z, ZHUGE C, GUAN X, et al. Channel distillation:Channel-wise attention for knowledge distillation: arXiv.2006.01683[R/OL]. lthaca, NY.US:Cornell University 2020(2020-06-2).https://arxiv.org/abs/2006.01683
|