欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (2): 240012-.doi: 10.12382/bgxb.2024.0012

• • 上一篇    下一篇

基于多通道数据双层增强的样本不平衡故障诊断方法

郭一鸣1,*(), 童一飞1, 何非1, 谢中取1, 宋世达2, 黄静1   

  1. 1 南京理工大学 机械工程学院, 江苏 南京 210094
    2 南京理工大学 材料科学与工程学院, 江苏 南京 210094
  • 收稿日期:2024-01-08 上线日期:2025-02-28
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(52305024); 江苏省自然科学基金青年项目(BK20230928); 中央高校基本科研业务费专项资金资助(30923011008); 中央高校基本科研业务费专项资金资助(30923011029)

Sample Imbalanced Fault Diagnosis Method Based on Multi-channel Data Double Augmentation

GUO Yiming1,*(), TONG Yifei1, HE Fei1, XIE Zhongqu1, SONG Shida2, HUANG Jing1   

  1. 1 School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
    2 School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • Received:2024-01-08 Online:2025-02-28

摘要:

在复杂制造过程中常需要采集并分析多通道数据以实现状态监测和故障诊断,针对现有方法难以处理多通道数据复杂时空相关结构和样本不平衡的问题,提出了一种基于多通道数据双层增强的样本不平衡故障诊断方法。所提模型具有2阶段数据增强和全局优化的特点,通过先学习故障特征再转化为多通道数据的方式实现数据增强,引入分布差异评估机制有效地描述不同通道之间的数据相关性,基于多目标的全局优化策略来提高生成数据的质量。通过实际案例验证所提方法的有效性,实验结果表明:双层增强方法能有效扩充多通道数据的样本量,全局优化策略可以提高生成数据在故障诊断中的性能。与现有模型相比,所提方法在多种样本不平衡场景下均具有较高的故障诊断准确率。

关键词: 多通道数据, 样本不平衡故障诊断, 双层数据增强, 全局优化

Abstract:

In complex manufacturing processes,it is crucial to collect and analyze the multi-channel data for condition monitoring and fault diagnosis.The existing methods are used to difficultly handle the problems of complex spatial-temporal correlation and sample imbalance of the multi-channel data.To solve these problems,a sample imbalance fault diagnosis method based on multi-channel data double augmentation is developed.The proposed method has the advantages of two-stage data augmentation and global optimization.It first learns the fault features,and then converts them into the multi-channel data for the data augmentation.The distribution difference evaluation mechanism is introduced to effectively describe the correlation between different channels,and a multi-objective global optimization strategy is designed to improve the quality of generated data.The effectiveness of the proposed method is verified by studying a real-world case.The experimental results show that the data double augmentation method can effectively expand the multi-channel data with small samples,and the global optimization strategy can improve the performance of generated data in the fault diagnosis.Compared with existing methods,the proposed method has higher fault diagnosis accuracy in various sample imbalance scenarios.

Key words: multi-channel data, sample imbalance fault diagnosis, data augmentation, global optimization

中图分类号: