欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (2): 240329-.doi: 10.12382/bgxb.2024.0329

• • 上一篇    下一篇

基于频率切片小波变换和注意力增强ConvNeXt模型的行星齿轮箱故障诊断

崔素晓1, 武哲1, 崔彦平1,*(), 张强2, 赵月静1   

  1. 1 河北科技大学 机械工程学院, 河北 石家庄 050018
    2 中国北方车辆研究所 坦克传动国防重点实验室, 北京 100072
  • 收稿日期:2024-04-26 上线日期:2025-02-28
  • 通讯作者:
  • 基金资助:
    中央引导地方科技发展资金项目(226Z1906G); 河北省教育厅科学研究项目资助(CXY2024038); 石家庄市驻冀高校基础研究项目(241791157A)

Fault Diagnosis of Planetary Gearbox Based on Frequency Slice Wavelet Transform and Attention-enhanced ConvNeXt Model

CUI Suxiao1, WU Zhe1, CUI Yanping1,*(), ZHANG Qiang2, ZHAO Yuejing1   

  1. 1 School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
    2 National Defense Key Laboratory of Tank Transmission, China North Vehicle Research Institute, Beijing 100072, China
  • Received:2024-04-26 Online:2025-02-28

摘要:

针对传统手工提取故障特征过度依赖专家的先验知识,导致信息提取不完全、效率低、成本高、漏诊误诊的问题,提出一种基于频率切片小波变换(Frequency Slice Wavelet Transform,FSWT)和注意力增强ConvNeXt模型的新方法,用于行星齿轮箱故障诊断。该方法在ConvNeXt模型基础上融合卷积注意力模块(Convolutional Block Attention Module,CBAM),使网络更加聚焦于关键区域的特征,减小无关目标的干扰。通过FSWT将一维振动信号转化为具有二维特征的时频谱图像,输入到改进后的网络中进行自动特征提取,并建立特征空间与故障空间之间的映射关系,实现不同故障模式的准确区分。利用动力传动模拟实验台数据对所提方法进行实验验证,结果表明:相较于其他网络模型,改进后的ConvNeXt模型能够准确识别出齿轮特定类型的故障,且噪声干扰下依旧展现出良好的鲁棒性。所得研究成果可为行星齿轮箱智能故障诊断提供参考。

关键词: 行星齿轮箱, 频率切片小波变换, 注意力机制, ConvNeXt模型, 故障诊断

Abstract:

The excessive reliance on experts prior knowledge in traditional manual fault feature extraction leads to incomplete information extraction,low efficiency,high cost,and missed or misdiagnosed cases.A fault diagnosis method based on frequency slice wavelet transform (FSWT) and attention-enhanced ConvNeXt is proposed for planetary gearboxes.This method integrates the convolutional block attention module (CBAM) into the ConvNeXt model,enabling the network to focus more on key regional features and reduce the interference from irrelevant targets.The one-dimensional vibration signals are transformed into the two-dimensional time-frequency spectrum images by applying FSWT,which are then input into the improved network for automatic feature extraction.A mapping relationship between the feature space and the fault space is established to accurately distinguish different fault modes.The proposed method is validated experimentally using the data from a dynamic drive simulation experimental platform.The results show that compared to other network models,the improved ConvNeXt model can accurately identify specific types of gear faults and exhibit good robustness even under noise interference.The research findings provide valuable reference for intelligent fault diagnosis of planetary gearboxes.

Key words: planetary gearbox, frequency slice wavelet transform, attention mechanism, ConvNeXt model, fault diagnosis