欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (2): 240376-.doi: 10.12382/bgxb.2024.0376

• • 上一篇    下一篇

成像制导运动模糊目标检测算法

赵春博1, 莫波1,*(), 李大维2, 赵洁3   

  1. 1 北京理工大学 宇航学院, 北京 100081
    2 西南技术物理研究所, 四川 成都 610041
    3 北方导航控制技术股份有限公司, 北京 100176
  • 收稿日期:2024-05-16 上线日期:2025-02-28
  • 通讯作者:

Research on Motion Blur Object Detection Technology for Imaging Guidance

ZHAO Chunbo1, MO Bo1,*(), LI Dawei2, ZHAO Jie3   

  1. 1 School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, Beijing, China
    2 Southwest Institute of Technical Physics, Chengdu 610041, Sichuan, China
    3 North Navigation Control Technology Co., Ltd., Beijing 100176, China
  • Received:2024-05-16 Online:2025-02-28

摘要:

为提升弹载成像制导中运动模糊图像目标检测的精确性与效率,提出一种轻量化且高效的运动模糊图像目标检测(Lighter and More Effective Motion-blurred Image Object Detection,LEMBD)网络。通过深入分析运动模糊图像的成因,基于成像机理构建了专用的运动模糊图像数据集。在不增加网络参数的前提下,采用共享权重的孪生网络设计,并引入先验知识,将清晰图像的特征学习用于模糊图像的特征提取,以同时实现对清晰与模糊图像的精准检测。此外,设计了部分深度可分离卷积替代普通卷积,显著减少了网络的参数量与计算量,并提升了学习性能。为进一步优化特征融合质量,提出跨层路径聚合特征金字塔网络,有效利用低级特征的细节信息和高级特征的语义信息。实验结果表明,所提LEMBD网络在运动模糊图像目标检测任务中的性能优于传统目标检测方法和主流运动模糊检测算法,能够为精确制导任务提供更精准的目标相对位置信息。

关键词: 精确目标检测, 运动模糊, 轻量化, 部分深度可分离卷积, 跨层路径聚合特征金字塔网络

Abstract:

To enhance the accuracy and efficiency of motion-blurred image object detection in missile-borne imaging guidance,this paper proposes a lighter and more effective motion-blurred image object detection (LEMBD) network.The causes of motion-blurred image are analyzed,and a dedicated motion-blurred image dataset is constructed based on the imaging mechanism.Without increasing network parameters,a shared-weight siamese network design is adopted,and the prior knowledge is introduced to extract the features of blurred images by the feature learning of clear images,thereby enabling the simultaneous detection of both clear and blurred images.Additionally,the partial depthwise separable convolutions are introduced to replace the standard convolutions,which significantly reduce the parameter count and computational cost while enhancing learning performance.To further improve the feature fusion quality,a cross-layer path aggregation feature pyramid network is designed to effectively leverage both the detail information of low-level features and the semantic information of high-level features.Experimental results demonstrate that the proposed LEMBD network achieves superior performance in detecting the targets within motion-blurred images compared to conventional object detection and state-of-the-art motion-blurred detection methods,which can provide more accurate relative positional information for precision guidance tasks.

Key words: accurate object detection, motion-blurring, lightweight, partial depth separable convolution, cross-layer path aggregation feature pyramid network

中图分类号: