欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (2): 240016-.doi: 10.12382/bgxb.2024.0016

• • 上一篇    下一篇

基于卷积神经网络与支持向量机的适配器落点预测方法

苏政宇, 杨宝生, 杨婧, 唐静楠, 姜毅*(), 邓月光   

  1. 北京理工大学 宇航学院, 北京 100081
  • 收稿日期:2024-01-08 上线日期:2025-02-28
  • 通讯作者:

A CNN-SVM-based Adapter Drop Point Prediction Algorithm

SU Zhengyu, YANG Baosheng, YANG Jing, TANG Jingnan, JIANG Yi*(), DENG Yueguang   

  1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2024-01-08 Online:2025-02-28

摘要:

针对发射过程适配器落点预测算法存在的求解时间长、耗费资源多等问题,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)与支持向量机(Support Vector Machine,SVM)算法的适配器落点预测模型。基于欧拉角描述建立发射过程适配器动力学运动模型,并通过四阶龙格库塔法对适配器运动轨迹进行数值求解,获得大量的适配器运动状态参数和落点信息;提出CNN-SVM的适配器落点预测模型,采用Adam优化器优化CNN网络性能,并通过网格搜索法获得SVM最佳的超参数。研究结果表明:CNN-SVM模型对适配器落点预测具有较好的求解精度和较强的泛化性能,其训练集和测试集的R2值均大于0.99,同时该模型的平均绝对误差均小于0.1m;在相同的计算资源且满足任务预测精度的条件下,其求解时间仅为传统数值积分方法的8.5%。该模型在实际应用中具备显著的优势,为发射过程中适配器分离落点快速预测提供了一种有效的解决方案。

关键词: 落点预测, 适配器, 卷积神经网络, 支持向量机

Abstract:

To address the prolonged processing and resource consumption challenges in the launch process adapter drop point prediction algorithm,a adapter drop point prediction model with convolutional neural network and support vector machine (CNN-SVM) is proposed.The adapter dynamics and motion models are established by utilizing Euler angle representation,and the fourth-order Runge-Kutta method is used to numerically solve the motion trajectory of adapter to provide the extensive motion state parameters and drop point information.The CNN-SVM-based adapter drop point prediction model uses the Adam optimizer to optimize CNN network performance,and determines optimal SVM hyperparameters through mesh searching.Simulated results show that the proposed model has high solution accuracy and robust generalization performance for adapter drop prediction,achieving R2 values exceeding 0.99 for both training and test sets and the mean absolute error (MAE) less than 0.1m.The solution time of the proposed method is only 8.5% compared to that of the traditional numerical integration method under the conditions of equivalent resources and the required prediction accuracy.The proposed model offers an efficient solution for rapidly predicting the adapter separation drop point during the launch process.

Key words: drop point prediction, adapter, convolutional neural network, support vector machine

中图分类号: