欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (8): 240987-.doi: 10.12382/bgxb.2024.0987

• • 上一篇    下一篇

基于神经网络的密集城市建筑群爆炸载荷快速预测

黄沛吉1, 彭卫文1, 冷春江1, 张情2, 钟巍2,*()   

  1. 1.中山大学 智能工程学院, 广东 广州 510275
    2.西北核技术研究所 强脉冲辐射环境模拟与效应全国重点实验室, 陕西 西安 710024

Rapid Prediction of Blast Loading in Dense Urban Building Complex Based on Neural Networks

HUANG Peiji1, PENG Weiwen1, LENG Chunjiang1, ZHANG Qing2, ZHONG Wei2,*()   

  1. 1. School of Intelligent System Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong,China
    2. State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024, Shaanxi, China
  • Received:2024-10-24 Online:2025-08-28

摘要:

城市建筑的交错布局提高了爆炸冲击波传播路径的复杂性,从而增加了对毁伤效应进行全面准确评估的难度。基于计算流体动力学的数值模拟方法虽然能够精确模拟爆炸产生的冲击载荷,但所需的计算量大且计算时间长。为实现在密集城市建筑群场景下爆炸冲击波载荷的快速预测,提出基于神经网络的快速预测方法。分析训练样本数量对模型预测精度的影响,研究区域划分对模型预测性能的作用。为满足神经网络模型训练的数据需求,使用爆炸模拟软件在一个典型密集城市建筑群场景下进行网格敏感性分析,在兼顾模拟速度和精度情况下产生了80组爆炸情况的数据;为确定合适的模型结构,构建不同层数的全连接神经网络进行对比实验与分析;通过对比实验,分析训练样本数量、区域划分以及构建双模型对模型预测精度的影响。实验结果表明:新方法在训练数据以外未见过的16组测试数据上预测误差达到10%以内,推理时间只需2s,为实现城市建筑群爆炸载荷快速预测提供了一种新的途径和视角。

关键词: 复杂城市环境, 爆炸载荷, 神经网络, 快速预测

Abstract:

The staggered layout of urban building complex makes the propagation path of explosion shock wave more complicated,thereby increasing the difficulty of evaluating the damage effect comprehensively and accurately.Numerical simulation methods based on computational fluid dynamics can accurately simulate the blast loading,but the calculated amount is large and the calculation time is long.In order to rapidly predict the blast loading in urban building complex,a fast blast loading prediction method based on neural network is proposed.The influence of the number of training samples on the prediction accuracy and the effect of regional division on the prediction performance of the model are analyzed.In order to meet the data requirements for training the neural network model,the explosion simulation software is used to analyze the mesh sensitivity in a typical dense urban building complex and generate a dataset for 80 sets of explosion scenarios while considering simulation speed and accuracy.In order to determine the appropriate model structure,the fully connected neural networks with different numbers of layers are constructed for comparative experiment and analysis.The effects of the number of training samples,the division of region and the construction of dual models on the prediction accuracy of the model are analyzed through comparative experiments.The results show that the prediction error of the proposed method is less than 10% on 16 sets of test data except the training data,and the inference time only takes 2 seconds.The proposed method has a balanced and good prediction ability for various ranges of peak overpressure,and provides a new approach and perspective for realizing the rapid prediction of blast loading in urban building complex.

Key words: complex urban environment, blast loading, neural network, rapid prediction