欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (S1): 219-230.doi: 10.12382/bgxb.2024.0587

• • 上一篇    下一篇

基于光照感知和特征增强的可见光-热红外图像语义分割

刘锟龙1, 王虎1,*(), 刘小强1, 牛帅旭1, 黄奕1, 付琦2, 赵涛3   

  1. 1 西安应用光学研究所, 陕西 西安 710065
    2 中国兵器科学研究院, 北京 100089
    3 西安现代控制技术研究所, 陕西 西安 710021

Illumination Perception and Feature Enhancement Network for RGB-T Semantic Segmentation

LIU Kunlong1, WANG Hu1,*(), LIU Xiaoqiang1, NIU Shuaixu1, HUANG Yi1, FU Qi2, ZHAO Tao3   

  1. 1 Xi’an Institute of Applied Optics,Xi’an 710065,Shaanxi,China
    2 Chinese Academy of Ordnance Sciences,Beijing 100089,China
    3 Xi’an Modern Control Technology Research Institute, Xi’an 710021, Shaanxi, China
  • Received:2024-07-15 Online:2024-11-06

摘要:

在智能光电设备中,基于人工智能的可见光-热红外(Red Greed Blue-Thermal, RGB-T)图像语义分割任务可以广泛应用于自动驾驶、无人机航拍、视频监控等。图像的光照信息能在一定程度上反映场景中图像局部区域信息的可靠性,利用光照先验信息有助于进一步提高语义分割的性能。基于此,提出一种基于光照感知和特征增强的RGB-T图像语义分割模型,通过挖掘光照先验信息并结合注意力机制,引导网络在多模态图像特征融合过程中更加关注可靠信息的提取,同时抑制干扰信息的引入。实验在MFNet数据集上与最新的12种方法进行了比较,相比于性能第2的模型,mAcc提高了5.4%,mIoU提高了1.0%。所提网络模型能够获得更准确的分割结果,并通过定性定量实验验证所提模型及各个模块的有效性。

关键词: 可见光-热红外图像语义分割, 卷积神经网络, 图像先验信息, 光照感知算法, 特征增强和融合算法

Abstract:

In intelligent optoelectronic devices, the red greed blue-thermal (RGB-T) semantic segmentation tasks based on artificial intelligence can be widely applied in autonomous driving, drone aerial photography, video surveillance, and other fields. The image illumination prior information can be used to further improve the performance of semantic segmentation. An illumination perception and feature enhancement based RGB-T semantic segmentation model is presented. In the proposed model, those discriminative informations in input images can be highlighted, and those non-discriminative ones can be suppressed by employing the illumination prior information and attention mechanisms. The proposed model is compared with 12 state-of-the-art saliency models, including RGB, RGB-D and RGB-T semantic segmentation models on MFNet dataset. The quantitative evaluation metrics contain mean accuracy (mAcc) and mean intersection over union (mIoU). Compared with the second-best performing model, the proposed model achieves a 5.4% improvement in mAcc and a 1.0% improvement in mIoU. In addition, a series of ablation experiments in MFNet Dataset to are conducted to clearly show the effectiveness of different components in the proposed model. In this study, A new RGB-T semantic segmentation model, namely, illumination perception and feature enhancement network is proposed, which contains a illumination perception network, an attention interaction and feature enhancement module and a multi-scale feature interaction and fusion module. Experimental results on the public datasets demonstrate that the proposed model can achieve higher segmentation accuracy than some state-of-the-art models.

Key words: red greed blue-thermal image semantic segmentation, convolutional neural network, image prior information, illumination perception algorithm, feature enhancement and fusion algorithm

中图分类号: