欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于神经网络的密集城市建筑群爆炸荷载快速预测

黄沛吉1,彭卫文1,冷春江1,张情2,钟巍2*()   

  1. (1. 中山大学 智能工程学院, 广东 广州 510275; 2. 西北核技术研究所 强脉冲辐射环境模拟与效应全国重点实验室, 陕西 西安 710024)
  • 收稿日期:2024-10-24 修回日期:2025-03-18
  • 通讯作者: *邮箱:zhongwei@nint.ac.cn
  • 基金资助:
    O382.1

Rapid Prediction of Blast Loading in Complex Urban Environment Based on Neural Networks

HUANG Peiji1,PENG Weiwen1,LENG Chunjiang1,Zhang Qing2,ZHONG Wei2*()   

  1. (1. School of Intelligent System Engineering, SUN YAT-SEN University, Guangzhou 510275, Guangdong, China; 2. State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi’an 710024, Shaanxi, China)
  • Received:2024-10-24 Revised:2025-03-18

摘要: 城市建筑的交错布局提高了爆炸冲击波传播路径的复杂性,从而增加了对毁伤效应进行全面准确评估的难度。基于计算流体力学的数值模拟方法虽然能够精确模拟爆炸产生的冲击荷载,但所需的计算量大且计算时间长。为实现在密集城市建筑群场景下爆炸冲击波荷载的快速预测,提出基于神经网络的快速预测方法。分析训练样本数量对模型预测精度的影响,研究区域划分对模型预测性能的作用。为满足神经网络模型训练的数据需求,使用爆炸模拟软件在一个典型密集城市建筑群场景下进行网格敏感性分析,在兼顾模拟速度和精度情况下产生了80组爆炸情况的数据;为确定合适的模型结构,构建不同层数的全连接神经网络进行对比实验与分析;通过对比实验,分析训练样本数量、区域划分以及构建双模型对模型预测精度的影响。实验结果表明:所提方法在训练数据以外未见过的16组测试数据上预测误差达到10%以内,推理时间只需2s,为实现城市建筑群爆炸荷载快速预测提供一种新的途径和视角。

关键词: 复杂城市环境, 爆炸荷载, 神经网络, 快速预测

Abstract: The staggered layout of urban buildings increases the complexity of the propagation path of explosion shock wave, which increases the difficulty of evaluating the damage effect comprehensively and accurately. Numerical simulation methods based on computational fluid dynamics can accurately calculate the blast loading, but the calculation amount is large and the calculation time is long. In order to realize the rapid prediction of blast loading in complex urban environment, a fast blast loading prediction method based on neural network is proposed. The influence of the number of training samples on the prediction accuracy and the effect of regional division on the prediction performance of the model are analyzed. In order to meet the data requirements of neural network model training, explosion simulation software is used to perform mesh sensitivity analysis and generate a dataset of 80 explosion examples while considering simulation speed and accuracy. In order to determine the appropriate model structure, fully connected neural networks with different layers are constructed for comparative experiment and analysis. Through comparative experiments, the effects of the number of training samples, the division of region and the construction of dual models on the prediction accuracy of the model are analyzed. The results showed that the prediction error of the proposed method is less than 10% on 16 groups of test data that have not been seen before except the training data,and the inference time only takes 2 seconds. It has a balanced and good prediction ability for various ranges of peak overpressure and provides a new approach and perspective for realizing the rapid prediction of explosion load of urban buildings.

Key words: complex urban environment, blast loading, neural networks, rapid prediction