欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (S1): 242-251.doi: 10.12382/bgxb.2024.0574

• • 上一篇    下一篇

基于图神经网络的车辆目标遮蔽关重部位检测

王烨茹1, 杨耿2, 刘述3, 许啸4, 陈华杰4,*(), 秦飞巍5, 徐华杰6   

  1. 1 杭州电子科技大学 网络空间安全学院, 浙江 杭州 310018
    2 32381部队, 北京 100072
    3 杭州智元研究院有限公司, 浙江 杭州 310000
    4 杭州电子科技大学 自动化学院, 浙江 杭州 310018
    5 杭州电子科技大学 计算机学院, 浙江 杭州 310018
    6 浙江科技大学 信息与电子工程学院, 浙江 杭州 310063
  • 收稿日期:2024-07-11 上线日期:2024-11-06
  • 通讯作者:
  • 基金资助:
    浙江省尖兵领雁项目(2023C03195); 智元国家重点实验室开放课题(ZYL2024018a); 计算机辅助设计与图形学(CAD&CG); 计算机辅助设计与图形学(A2304); 航空科学基金项目(2022Z0710T5001)

GCN-based Detection of Occluded Key Parts of Vehicle Target

WANG Yeru1, YANG Geng2, LIU Shu3, XU Xiao4, CHEN Huajie4,*(), QIN Feiwei5, XU Huajie6   

  1. 1 School of Cyberspace Security, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
    2 Unit 32381 of PLA, Beijing 100072, China
    3 Hangzhou Zhiyuan Research Institute Co., Ltd., Hangzhou, 310000, Zhejiang, China
    4 School of Automation, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
    5 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
    6 School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310063, Zhejiang, China
  • Received:2024-07-11 Online:2024-11-06

摘要:

针对复杂背景和车辆姿态变化导致的车辆关重部位在图像中被遮蔽,无法准确识别的问题,提出了部分可形变物体图卷积神经网络(Partially Deformable Object Graph Convolutional Network,PDO-GCN)的遮蔽车辆关重部位检测模型。该方法以车辆刚体结构关系为基础,构建了基于PDO-GCN的二维成像平面上关重部位之间的空间关联模型,并利用可见关重部位的检测结果估计遮蔽关重部位的位置。实验结果表明,PDO-GCN模型在无需复杂标注的前提下,能够有效推断完整车辆结构信息,显著提高遮蔽部位的检测精度,且满足实时性要求,具有良好的应用潜力。

关键词: 目标检测, 车辆关重部位, 遮蔽, 刚体结构, 先验知识, 图卷积神经网络

Abstract:

The key parts of vehicle occluded due to complex backgrounds and variations in vehicle posture can not be accurately identified in images. A detection method based on partially deformable object graph convolutional network (PDO-GCN) is proposed for detecting the occluded key parts of vehicle. This method is founded on the rigid body structural relationships of vehicles, constructing a spatial association model between key parts on the 2D imaging plane based on PDO-GCN, and utilizes the detected results of visible key parts to estimate the locations of occluded ones. Experimental results demonstrate that the PDO-GCN model can effectively infer the complete vehicle structural information without the need for complex annotations, significantly improves the detection accuracy of occluded parts and fulfils the real-time requirements, thus showcasing considerable potential for practical application.

Key words: object detection, vehicle key part, occlusion, rigid structure, prior knowledge, graph convolutional neural network

中图分类号: