[1] |
常会振, 秦大国, 孙盛智, 等. 基于ADC模型优化的海上无人机作战效能评估[J]. 兵器装备工程学报, 2023, 44(9):58-68.
|
|
CHANG H Z, QIN D G, SUN S Z, et al. Operational effectiveness evaluation of maritime unmanned aerial vehicle based on ADC model optimization[J]. Journal of Ordnance Equipment Engineering, 2023, 44(9): 58-68. (in Chinese)
|
[2] |
CHANG H Y, ZHANG R, ZHANG Y. The evaluation of information contribution for unmanned aerial vehicle integrating into the air combat system[C]// Proceedings of the 2022 IEEE International Conference on Unmanned Systems. Guangzhou, China: IEEE, 2022: 681-687.
|
[3] |
吴志飞, 肖丁, 张立. “集对-指数法”的水面舰艇作战能力评估[J]. 火力与指挥控制, 2013, 38(9):101-103.
|
|
WU Z F, XIAO D, ZHANG L. Research on surface warship combat capability evaluation based on set pair analysis and index method[J]. Fire Control & Command Control 2013, 38(9):101-103. (in Chinese)
|
[4] |
史睿冰, 姚兴太, 史圣兵, 等. 基于层次分析法的通信系统效能评估[J]. 计算机工程与设计, 2013, 34(12):4131-4136.
|
|
SHI R B, YAO X T, SHI S B, et al. Effectiveness evaluation of communication system based on AHP[J]. Computer Engineering and Design, 2013, 34(12):4131-4136. (in Chinese)
|
[5] |
唐政, 孙超, 刘宗伟, 等. 基于灰色层次分析法的水声对抗系统效能评估[J]. 兵工学报, 2012, 33(4):432-436.
|
|
TANG Z, SUN C, LIU Z W, et al. Research on efficiency evaluation for underwater acoustic countermeasure system based on grey hierarchy analysis[J]. Acta Armamentarii, 2012, 33(4): 432-436. (in Chinese)
|
[6] |
LI H, XING J S. Combat effectiveness evaluation method of photoelectric defense system based on BP neural network optimized by bat algorithm[C]// Proceedings of the 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer. Shenyang, China: IEEE, 2013: 2481-2485.
|
[7] |
刘遵飞, 邹波, 陈续麟, 等. 有人与无人联合作战模式下的装备体系结构建模与效能评估[J]. 兵工学报, 2022, 43(增刊1):155-161.
|
|
LIU Z F, ZOU B, CHEN X L, et al. Architecture modeling and effectiveness evaluation of equipment system under manned and unmanned joint operation mode[J]. Acta Armamentarii, 2022, 43(S1): 155-161. (in Chinese)
doi: 10.12382/bgxb.2022.A027
|
[8] |
DUAN L D, SHI H Y, LIN Z C, et al. Evaluation method of UAV’s contribution degree to army aviation combat system based on MMF and ANP[C]// Proceedings of the 2020 12th International Conference on Intelligent Human-Machine Systems and Cybernetics. Hangzhou, China: IEEE, 2020: 261-264.
|
[9] |
杨梓鑫, 薛源, 孙畅, 等. 基于Elman神经网络和Copula函数的多维装备效能评估模型[J]. 兵工学报, 2020, 41(8):1633-1645.
doi: 10.3969/j.issn.1000-1093.2020.08.018
|
|
YANG Z X, XUE Y, SUN C, et al. Multidimensional equipment effectiveness evaluation model based on Elman neural network and Copula function[J]. Acta Armamentarii, 2020, 41(8): 1633-1645. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2020.08.018
|
[10] |
DUAN L D, WANG M, LIN Z C, et al. Research on evaluation method of UAV’s contribution degree to army aviation combat system based on simulation deduction[C]// Proceedings of the 2021 33rd Chinese Control and Decision Conference. Kunming, China: IEEE, 2021: 2580-2585.
|
[11] |
FANG J Y, ZHANG W M, MANG H B, et al. A method for generating small sample data and evaluating the effectiveness of combat weapons based on conditional adversarial nets[C]// Proceedings of the 2023 2nd International Conference on Artificial Intelligence and Computer Information Technology. Yichang, China: IEEE, 2023: 1-6.
|
[12] |
QUAN W, JIA L P, ZHANG Z, et al. A multi-dimensional dynamic evaluation method for the intelligence of unmanned aerial vehicle swarm[C]// Proceedings of the 2023 IEEE International Conference on Unmanned Systems. Hefei, China: IEEE, 2023: 731-737.
|
[13] |
DING Y M, ZHU M, LU Q. Effectiveness evaluation of underwater swarm combat based on FAHP and GA-Elman neural network[C]// Proceedings of the 2019 Chinese Automation Congress. Hangzhou, China: IEEE, 2019: 106-110.
|
[14] |
丁伟, 明振军, 王国新, 等. 基于多层次LSTM网络的多智能体攻防效能动态预测模型[J]. 兵工学报, 2023, 44(1):176-192.
doi: 10.12382/bgxb.2022.0192
|
|
DING W, MING Z J, WANG G X, et al. Dynamic prediction model based on multi-level LSTM network for multi-agent attack and defense effectiveness[J]. Acta Armamentarii, 2023, 44(1): 176-192. (in Chinese)
doi: 10.12382/bgxb.2022.0192
|
[15] |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[R/OL]. Ithaca, NY, US: Cornell University, 2016. https://arxiv.org/abs/1609.02907.
|