[1] |
杜志岐, 唐镜. 基于系统工程的装甲车辆总体设计[J]. 兵工学报, 2022, 43(增刊1):1-10.
|
|
DU Z Q, TANG J. Overall design of armored vehicles based on system engineering[J]. Acta Armamentarii, 2022, 43(S1):1-10. (in Chinese)
doi: 10.12382/bgxb.2022.A016
|
[2] |
李英顺, 周通, 刘海洋, 等. IGWO-SVM在火控系统故障预测中的应用[J]. 火炮发射与控制学报, 2022, 43(6):57-63.
|
|
LI Y S, ZHOU T, LIU H Y, et al. Application of IGWO-SVM in fault prediction of fire control systems[J]. Journal of Gun Launch & Control, 2022, 43(6):57-63. (in Chinese)
|
[3] |
ZHAN Z Q, YANG D Q, WANG J, et al. Transformer fault diagnosis method based on neural network and DS evidence theory[J]. Journal of Physics:Conference Series, 2022, 2260:012002.
|
[4] |
方喜峰, 于超, 章振, 等. 基于支持向量机的船用柴油机装配质量预测[J]. 组合机床与自动化加工技术, 2021(9):62-66.
doi: 10.13462/j.cnki.mmtamt.2021.09.014
|
|
FANG X F, YU C, ZHANG Z, et al. SVM-based prediction of assembly quality for marine diesel engines[J]. Combination Machine Tools & Automated Machining Technology, 2021(9):62-66. (in Chinese)
|
[5] |
LIANG X, LUO Y X, DENG F, et al. Application of improved MFDFA and DS evidence theory in fault diagnosis[J]. Applied Sciences, 2022, 12(10):4976.
|
[6] |
胡静, 吴迪. 基于改进神经网络的航空发动机故障预测[J]. 信息工程大学学报, 2020, 21(5):534-538.
|
|
HU J, WU D. Aero-engine fault prediction based on improved neural network[J]. Journal of Information Engineering University, 2020, 21(5):534-538. (in Chinese)
|
[7] |
张福生, 潘学文, 路超. 基于SSA优化BP神经网络的故障诊断系统研究[J]. 中国工程机械学报, 2022, 20(1):81-85,90.
|
|
ZHANG F S, PAN X W, LU C. Research on fault diagnosis system based on SSA optimized BP neural network[J]. China Journal of Construction Machinery, 2022, 20(1):81-85,90. (in Chinese)
|
[8] |
XUE J K, SHEN B. Dung beetle optimizer:a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7):7305-7336.
|
[9] |
KEMPFERT K C, WANG Y S, CHEN C X, et al. A comparison study on nonlinear dimension reduction methods with kernel variations:visualization,optimization and classification[J]. Intelligent Data Analysis, 2020, 24(2):267-290.
|
[10] |
LI W W, TAN H L, FENG J W, et al. Kernel reverse neighborhood discriminant analysis[J]. Electronics, 2023, 12(6):1322.
|
[11] |
HOFMANN T, SMOLA B S, SMOLA A. Kernel methods in machine learning[J]. The Annals of Statistics, 2008, 36(3):1171-1220.
|
[12] |
QU Z X, MAO W Q, ZHANG K Q, et al. Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network[J]. Renewable Energy, 2019, 133:919-929.
|
[13] |
LIU H F, REN C, ZHENG Z T, et al. Study of a gray genetic BP neural network model in fault monitoring and a diagnosis system for dam safety[J]. ISPRS International Journal of Geo-Information, 2017, 7(1):4.
|
[14] |
LIU P F, ZHANG W. A fault diagnosis intelligent algorithm based on improved BP neural network[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2019, 33(9):1959028.
|
[15] |
SHEN Q W, ZHANG D M, XIE M S, et al. Multi-strategy enhanced dung beetle optimizer and its application in three-dimensional UAV path planning[J]. Symmetry, 2023, 15(7):1432.
|
[16] |
MOUSAVIRAD S J, BIDGOLI A A, RAHNAMAYAN S. Tackling deceptive optimization problems using opposition-based DE with center-based Latin hypercube initialization[C]// Proceedings of the 2019 14th International Conference on Computer Science & Education. Toronto,ON,Canada: IEEE, 2019:394-400.
|
[17] |
LIANG S J, PAN Y M, ZHANG H L, et al. Marine predators algorithm based on adaptive weight and chaos factor and its application[J]. Scientific Programming, 2022, 2022(1):4623980.
|
[18] |
CHEN Y H, XI J F, WANG H B, et al. Grey wolf optimization algorithm based on dynamically adjusting inertial weight and levy flight strategy[J]. Evolutionary Intelligence, 2023, 16(3):917-927.
|
[19] |
DHAWALE P G, KAMBOJ V K, BATH S K. A levy flight based strategy to improve the exploitation capability of arithmetic optimization algorithm for engineering global optimization problems[J]. Transactions on Emerging Telecommunications Technologies, 2023, 34(4):e4739.
|
[20] |
薛鹏. 发动机润滑系统结构与主要部件的检修研究[J]. 内燃机与配件, 2020( 23):149-150.
|
|
XUE P. Overhaul study of engine lubrication system structure and main components[J]. Internal Combustion Engines and Accessories, 2020(23):149-150. (in Chinese)
|
[21] |
BENESTY J, CHEN J D, HUANG Y T, et al. Pearson correlation coefficient[M]// BENESTYJ, KELLERMANNW. Noise reduction in speech processing. Berlin,Heidelberg,Germany: Springer, 2009:37-40.
|
[22] |
NTI I K, NYARKO-BOATENG O, ANING J. Performance of machine learning algorithms with different K values in K-fold cross-validation[J]. International Journal of Information Technology and Computer Science, 2021, 13(6):61-71.
|