欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (3): 240083-.doi: 10.12382/bgxb.2024.0083

• • 上一篇    下一篇

基于KLDA-IDBO-BP的装甲车发动机故障诊断

李英顺1,*(), 于昂1, 李茂2, 贺喆2, 刘师铭1   

  1. 1 北京石油化工学院 信息工程学院, 北京 102617
    2 陆军装备部驻沈阳地区第三军代室, 辽宁 沈阳 110000
  • 收稿日期:2024-01-26 上线日期:2025-03-26
  • 通讯作者:
  • 基金资助:
    辽宁省兴辽英才计划项目(XLYC1903015)

Fault Diagnosis of Armored Vehicle Engine Based on KLDA-IDBO-BP

LI Yingshun1,*(), YU Ang1, LI Mao2, HE Zhe2, LIU Shiming1   

  1. 1 School of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
    2 The Third Military Representative Office of the Army Equipment Department in Shenyang, Shenyang 110000, Liaoning, China
  • Received:2024-01-26 Online:2025-03-26

摘要:

润滑油在发动机中发挥作用时携带着大量关于发动机的状态信息,能够对发动机产生的故障进行表征,可利用其对发动机进行故障诊断。以某型装甲车辆发动机为研究对象,提出一种基于核线性判别和改进的蜣螂优化算法优化反向传播(Back Propagation,BP)神经网络的故障诊断方法。对获取的润滑油数据通过核线性判别分析进行降维处理,降维后的数据作为BP神经网络的输入,通过引入最优拉丁超立方、权重因子以及Levy飞行策略对蜣螂优化算法进行改进,进一步对BP神经网络的关键参数进行优化,建立故障诊断模型,实现对测试数据的故障预测。实验结果验证了新方法在进行故障诊断预测方面的有效性,为装甲车辆发动机的维护和修理提供了科学依据。

关键词: 润滑油信息, 发动机, 故障诊断, 蜣螂优化算法, 反向传播神经网络, 核线性判别分析

Abstract:

Lubricating oil plays a pivotal role in engines due to carrying a wealth of information about the engine state,and is crucial for characterizing the faults of engine.The engine of an armored vehicle is studied,and a fault diagnosis method for the engine is proposed,which leverages the kernel linear discriminant analysis (KLDA) and an improved dung beetle optimization (DBO) algorithm to optimize a back propagation (BP) neural network.The dimensionality reduction of the acquired lubricating oil data is performed through KLDA,and the dimensionality reduced data is taken as input for the BP neural network.The DBO algorithm is then enhanced by integrating optimal Latin hypercube sampling method,weighting factors and Levy flight strategy in order to further optimize the key parameters of neural network.A fault diagnosis model is established to predict the faults in test data effectively.Experimental results affirm the proposed method’s efficacy in rapidly and accurately predicting the faults,providing a scientific basis for the maintenance and repair of engines in armored vehicles.

Key words: lubricating oil information, engine, fault diagnosis, dung beetle optimization algorithm, back propagation neural network, kernel linear discriminant analysis

中图分类号: