欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (3): 240421-.doi: 10.12382/bgxb.2024.0421

• • 上一篇    

基于神经网络补偿的坦克全电双向稳定系统非线性滑模控制

王一珉1, 袁树森2,*(), 林大睿1, 杨国来1,**()   

  1. 1 南京理工大学 机械工程学院, 江苏 南京 210094
    2 南京理工大学 瞬态物理全国重点实验室, 江苏 南京 210094
  • 收稿日期:2024-05-29 上线日期:2025-03-26
  • 通讯作者:
  • 基金资助:
    中国博士后科学基金面上项目(2024M754148); 国家资助博士后研究人员计划B档项目(GZB20240980); 基础加强173重点研究基金项目(2019-JCJQ-ZD-133-04)

Nonlinear Sliding Mode Control Based on Neural Network Compensation for Tank All-electric Bidirectional Stabilizers

WANG Yimin1, YUAN Shusen2,*(), LIN Darui1, YANG Guolai1,**()   

  1. 1 School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
    2 National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • Received:2024-05-29 Online:2025-03-26

摘要:

传统坦克双向稳定系统的控制策略难以有效处理新一代全电双向稳定系统中的耦合性、非线性和不确定性,而基于模型的非线性控制能够充分利用系统动态模型的先验信息提升控制效果。因此,建立计及执行器动态的全电双向稳定系统机电耦合动力学模型,提出一种基于神经网络补偿的非线性滑模控制方法。引入滑模面和基于双曲正切函数改进的滑模鲁棒控制律设计非线性滑模控制函数,以有效地消除系统振荡,提高系统的稳态性能。同时,深度融合多层神经网络,准确估计系统的不确定性并进行前馈补偿,避免高增益反馈。基于Lyapunov理论严格证明了新控制策略可以实现连续控制输入下坦克全电双向稳定系统的渐近稳定性能。搭建了联合仿真环境与半实物实验平台,通过大量对比实验验证了新控制策略的优越性。

关键词: 坦克, 全电双向稳定系统, 滑模控制, 神经网络, 动力学建模, 对比实验验证

Abstract:

The control strategy of traditional tank bidirectional stabilizers is difficult to effectively deal with the coupling,nonlinearity and uncertainty in the new generation of all-electric bidirectional stabilizers,while the model-based nonlinear control can make full use of a priori information from the dynamic model of the system to enhance the control effect.Based on this,an electromechanical coupled dynamics model of an all-electric bidirectional stabilizer taking the actuator dynamics into account is established,and a nonlinear sliding mode control method based on neural network compensation is proposed.The sliding mode surface and the improved sliding mode robust control law based on hyperbolic tangent function are introduced to construct the nonlinear sliding mode control function,which can effectively eliminate the system oscillations and improve the system stability.Meanwhile,the multilayer neural network technique is deeply fused to accurately estimate the uncertainty in the system and make compensation for the feedforward,thereby avoiding high-gain feedback.It is rigorously demonstrated by the stability theory based on Lyapunov functions that the proposed control strategy can achieve the asymptotic stability performance of tank all-electric bidirectional stabilizer with continuous control inputs.A co-simulation environment and a semi-physical experimental platform are built.The superiority of the proposed control strategy is verified through a large number of comparative experiments.

Key words: tank, all-electric bidirectional stabilizer, sliding mode control, neural network, dynamics modeling, comparative experimental validation

中图分类号: