[1] STEIN G, HUCKLENBROICH I. Manufacturing and applications of high nitrogen steels[J]. Materials and Manufacturing Processes, 2004,19(1): 7-17. [2] KAPUTKINA L M, SVAZHIN A G, SMARYGINA I V, et al. Corrosion and cavitation resistance of high-strength austenitic nitrogen stainless steels in seawater[J]. Steel in Translation, 2019, 49(1): 13-19. [3] BAYOUMI F M, GHANEM W A. Effect of nitrogen on the corrosion behavior of austenitic stainless steel in chloride solutions[J]. Materials Letters, 2005, 59(26): 3311-3314. [4] LI J, LI H, LIANG Y, et al. The microstructure and mechanical properties of multi-strand, composite welding-wire welded joints of high nitrogen austenitic stainless steel[J]. Materials, 2019, 12(18): 2944. [5] HOSSEINI V A, WESSMAN S, HURTIG K, et al. Nitrogen loss and effects on microstructure in multipass TIG welding of a super duplex stainless steel[J]. Materials & Design, 2016, 98: 88-97. [6] 胡秋月. 铬镍奥氏体不锈钢的焊接质量问题及对策[J]. 装备制造技术, 2016(3): 109-110. HU Q Y .Welding quality problems and countermeasures of chromium nickel austenitic stainless steel[J]. Equipment Manufacturing Technology, 2016(3): 109-110.(in Chinese) [7] 荆皓, 王克鸿, 强伟,等. 氮含量对高氮钢PMIG焊接头组织和性能的影响[J]. 焊接学报, 2017, 38(4):95-98. JING H, WANG K H, QIANG W, et al. Influence of N-content on microstructure and mechanical properties of PMIG welding joints of high nitrogen steel[J]. Transactions of the China Welding Institution, 2017, 38(4):95-98. (in Chinese) [8] KAMIYA O, CHEN Z W, KIKUCHI Y. Microporosity formation in partially melted zone during welding of high nitrogen austenitic stainless steels[J]. Journal of Materials Science, 2002, 37(12):2475-2481. [9] ZHAO L, TIAN Z L, PENG Y, et al. Influence of nitrogen and heat input on weld metal of gas tungsten arc welded high nitrogen steel[J]. Journal of Iron and Steel Research, International, 2007, 14(5):259-262. [10] 刘昂. 高氮钢MIG焊焊缝增氮及接头组织性能研究[D]. 哈尔滨:哈尔滨工业大学,2015. LIU A. Research of adding nitrogen to welded metal and microstructure and properties of high nitrogen steel MIG welded joint[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese) [11] 颜泽钢. 高氮奥氏体不锈钢氮氩混合气保焊焊接工艺试验研究[D]. 南京:南京理工大学,2016. YAN Z G. Researching on welding process of high nitrogen austenitic stainless steel with N-Ar mixed protecting gas[D]. Nanjing: Nanjing University of Science and Technology,2016.(in Chinese) [12] 崔博, 张宏, 刘双宇, 等. 高氮钢复合焊接接头氮含量和气孔控制方法研究[J]. 兵工学报, 2019,40(11):2311-2318. CUI B, ZHANG H, LIU S Y, et al. Research on control method of nitrogen content and porosity in hybrid welding joint of high nitrogen steel[J].Acta Armamentarii, 2019,40(11):2311-2318. (in Chinese) [13] 明珠,王克鸿,王伟,等. 焊丝含氮量及焊接电流对高氮钢焊缝组织和性能影响[J]. 焊接学报, 2019, 40(1): 104-108. MING Z, WANG K H, WANG W, et al. Effects of nitrogen content and welding current on microstructure and properties of the weld of high nitrogen austenite steel[J]. Transactions of the China Welding Institution, 2019, 40(1):104-108. (in Chinese) [14] 明珠,王克鸿,王伟,等. 冷却速率对高氮钢焊缝组织和性能的影响[J]. 焊接学报, 2019, 40(10): 31-35. MING Z, WANG K H, WANG W, et al. Effect of cooling rate on the microstructure and mechanical properties of high nitrogen stainless steel weld metal [J]. Transactions of the China Welding Institution,2019, 40(10):31-35.(in Chinese) [15] 辛秀成. 复合焊接的焊丝氮元素熔池过渡机理研究[D].长春:长春理工大学,2018. XIN X C. Effect of the different nitrogen content in welding wire on microstructure and mechanism for hybrid welding[D].Changchun:Changchun University of Science and Technology, 2018. (in Chinese) [16] WOO I, KIKUCHI Y. Weldability of high nitrogen stainless steels[J]. ISIJ International, 2002, 42(12): 1334-1343. [17] SCHINO A D, MECOZZI M G, BARTERI M, et al. Solidification mode and residual ferrite in low-Ni austenitic stainless steels[J]. Journal of Materials Science, 2000, 35(2):375-380.
|