[1] 李小龙. 速射武器身管材料劣化行为与弹道性能退化机理研究[D].北京:北京科技大学, 2020. LI X L.Research on the deterioration behavior of the barrel material of the rapid-fire weapon and the degradation mechanism of ballistic performance[D].Beijing:University of Science and Technology Beijing, 2020. (in Chinese) [2] 乔自平,李峻松,薛钧.大口径机枪枪管失效规律研究[J].兵工学报,2015, 36(12): 2231-2240. QIAO Z P, LI J S, XUE J.Research on the performance decay rule of large caliber machinegun barrel[J]. Acta Armamentarii, 2015, 36(12): 2231-2240. (in Chinese) [3] BANNISTER E L.Thermal theory for erosion of guns by propellant gases[C]∥Proceedings of the Interservice Technical Meeting on Gun Tube Erosion and Control. Springfield, VA, US:U. S. Army Weapons Command, 1970. [4] TURLEY D M, GUMMING M G, GUNNER A, et al. A metallurgical study of erosive wear in a 105 mm tank gun barrel[J]. Wear, 1994,176(1): 9-17. [5] HIRVONEN J K, DEMAREE J D, MARBLE D K, et al.Gun barrel erosion studies utilizing ion beams[J].Surface and Coatings Technology, 2005, 196(1/2/3):167-171. [6] COTE P J, RICKARD C.Gas-metal reaction products in the erosion of chromium-plated gun bores[J]. Wear, 2000, 241(1):17-25. [7] COTE P J, TODARO M E, KENDALL G, et al. Gun bore erosion mechanisms revisited with laser pulse heating[J].Surface and Coatings Technology, 2003,163/164:478-483. [8] KAMDAR M H, VENABLES J. Characterization of bore surface layers in gun barrels[R].New York,NY,US:Army Armament Research and Development Center, 1984. [9] MEN X D, TAO F H, GAN L, et al. Erosion behaviour of cobalt-based coatings with different carbide contents under high-speed propellant airflow[J]. Surface Engineering, 2020, 36(11): 1210- 1218. [10] MOELLER C E, BASSERT A J. Measurement of transient bore-surface temperatures in 7.62 mm gun tubes:AD-780938[R].Springfield, VA, US:U. S. Army Weapons Command, 1973. [11] LAWTON D B. The influence of additives on the temperature, heat transfer, wear, fatigue life, and self ignition characteristics of a 155 mm gun[J]. Journal Pressure Vessel Technology, 2003, 125: 315-320. [12] QU P, LI Q, YANG S F. Temperature field and thermal stress analysis of large caliber gun barrel[J]. Applied Mechanics and Materials, 2014, 518: 150-154. [13] JOHNSTON I A.Understanding and predicting gun barrel erosion:DSTO-TR-1757[R].Edinburgh,Australia:Defence Science and Technology Organization Edinburgh (Australia), 2005. [14] LI X L, ZANG Y, MU L, et al. Erosion analysis of machine gun barrel and lifespan prediction under typical shooting conditions[J]. Wear, 2020, 444-445: 203177. [15] MROWEC S, WALEC T, WERBER T. High-temperature sulfur corrosion of iron-chromium alloys[J]. Oxidation of Metals, 1969, 1(1): 93-120. [16] CHEN R Y, YEUN W Y D. Review of the high-temperature oxidation of iron and carbon steels in air or oxygen[J]. Oxidation of Metals, 2003, 59(5): 433-468. [17] 黄进峰.枪炮身管损伤行为与机理[M].北京:科学出版社, 2022. HUANG J F. Damage behavior and mechanism of gun barrel[M]. Beijing:Science Press, 2022. (in Chinese) [18] MONROE R W, BATES C E, PEARS C D. Metal combustion in high-pressure flowing oxygen[C]∥Proceedings of the symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres. Philadelphia, PA , US: ASTM, 1983: 126-149. [19] MCILROY K, MILLION J, ZAWIERUCHA R. Promoted ignition-combustion behavior of carbon steel in oxygen gas mixtures[C]∥Proceedings of the 6th International Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres. Philadelphia, PA , US:ASTM, 1993: 97-97. [20] BENZ F J, STOLTZFUS J M. Ignition of metals and alloys in gaseous oxygen by frictional heating[C]∥Proceedings of the 2nd International Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres. Philadelphia, PA, US:ASTM, 1986:38-58. [21] BENZ F J, WILLIAMS R E, ARMSTRONG D. Ignition of metals and alloys by high-velocity particles[C]∥Proceedings of the 2nd International Symposium on Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres. Philadelphia, PA, US:ASTM, 1986: 16-37. [22] SHAO L, XIE G L, ZHANG C, et al. Combustion of metals in oxygen-enriched atmospheres[J]. Metals, 2020,10(1): 128. [23] HUST J G, CLARK A F.A survey of compatibility of materials with high pressure oxygen service[J]. Cryogenics, 1973,13:325- 336. [24] BOLOBOV V I. Conditions for ignition of iron and carbon steel in oxygen[J]. Combustion. Explosion Shock Waves, 2001, 37(3): 292-296. [25] DOU C H, ZHANG C, WANG C Z, et al. Combustion characteristics and mechanisms of two gun barrel steels by promoted ignition combustion[J/OL].Combustion Science and Technology, 2021.(2021-11-09).https:∥doi.org/10.1080/00102202.2021.2008918. [26] 高海霞,黄进峰,张济山,等.速射武器身管用钢的白层形成及剥落机制[J].金属热处理, 2008(10): 109-113. GAO H X, HUANG J F, ZHANG J S, et al. Formation and spalling off mechanism of white layer of rapid-firing gun steel[J]. Heat Treatment of Metals, 2008(10): 109-113. (in Chinese) [27] Standard Test Method for determining the combustion behavior of metallic materials in oxygen-enriched atmospheres:ASTM A. G124-10[S]. West Conshohocken, PA,US: ASTM, 2010. [28] SHAO L, LI Z B, YU J B, et al. Combustion behavior and mechanisms of Ti2AlNb compared to an α+β Ti alloy[J]. Corrosion Science, 2021, 192: 109868. [29] STEINBERG T A, MULHOLLAND G P, WILSON D B, et al. The combustion of iron in high-pressure oxygen[J]. Combustion and Flame, 1992, 89: 221-228. [30] 陈肖玮. 膛线结构参数对身管温度场和烧蚀的影响研究[D].太原:中北大学,2021. CHEN X W. Research on the influence of rifling structure parameters on the temperature field and ablation of the barrel[D].Taiyuan:North University of China, 2021. (in Chinese) [31] 孙全兆.大口径榴弹炮弹带挤进动力学研究[D].南京:南京理工大学, 2016. SUN Q Z.Study on dynamics of rotating band engraving for large caliber howitzers[D].Nanjing:Nanjing University of Science and Technology, 2016. (in Chinese)
|