[1] BAI D, LIU F D, ZHONG H, et al. Corrosion behavior and passivation protection mechanism on different zone of high-nitrogen steel weld[J]. Materials Letters, 2021, 300: 130194. [2] 彭云, 宋亮, 赵琳, 等. 先进钢铁材料焊接性研究进展[J]. 金属学报, 2020, 56(4): 601-618. PENG Y, SONG L, ZHAO L, et al. Research status of weldability of advanced steel[J]. Acta Metallurgica Sinica, 2020, 56(4): 601-618. (in Chinese) [3] MOHMMED R, REDDY G M, RAO K S. Welding of nickel free high nitrogen stainless steel: microstructure and mechanical properties[J]. Defence Technology, 2017, 13(2): 59-71. [4] ZHAO L, TIAN Z L, PENG Y. Control of nitrogen content and porosity in gas tungsten arc welding of high nitrogen steel[J]. Science and Technology of Welding and Joining, 2009, 14(1): 87-92. [5] 张峰, 李光强, 朱诚意. 高氮钢制备及焊接过程中氮的溶解与释放[J]. 材料与冶金学报, 2006, 5(1):14-19. ZHANG F, LI G Q, ZHU C Y. Dissolution and release of nitrogen during preparing and welding of high nitrogen steel[J]. Journal of Materials and Metallurgy, 2006, 5(1): 14-19. (in Chinese) [6] 李欣欣, 张宏, 刘凤德, 等. 高氮钢复合焊接接头组织性能分析[J]. 激光技术, 2018, 42(3):341-345. LI X X, ZHANG H, LIU F D, et al. Analysis of microstructure and properties of welded joint of high nitrogen steel by hybrid welding[J]. Laser Technology, 2018, 42(3): 341-345.(in Chinese) [7] MOHAMMED R, RAO K S, REDDY G M. Effect of microstructure on stress corrosion cracking behaviour of high nitrogen stainless steel gas tungsten arc welds[J]. IOP Conference Series: Materials Science and Engineering, 2018, 330(1):12-15. [8] FRECHARD S, REDIAIEMIA A, LACH E, et al. Mechanical behaviour of nitrogen-alloyed austenitic stainless steel hardened by warm rolling[J]. Materials Science & Engineering A, 2006, 415(1/2): 219-224. [9] 滕彬, 李小宇, 雷振, 等. 低合金高强钢激光-电弧复合热源焊接冷裂纹敏感性分析[J]. 焊接学报, 2010, 31(11):61-64. TENG B, LI X Y, LEI Z, et al. Sensitivity analysis of cold Crack in laser-arc composite heat source welding of low alloy high strength steel[J]. Acta Armamentarii, 2010, 31(11): 61-64. (in Chinese) [10] 罗晔. 国外高硬度装甲钢焊接工艺进展[J]. 大型铸锻件, 2020, 195(3): 8-11. LUO Y. Review on welding technology of high hardness armor steels for combat vehicles[J]. Heavy Castings and Forgings, 2020, 195(3): 8-11. (in Chinese) [11] 谭俊, 张勇. 装甲钢焊接技术研究进展[J]. 兵工学报, 2013, 34(1): 115-124. TAN J, ZHANG Y. Research on welding processes of armor steels[J]. Acta Armamentarii, 2013, 34(1): 115-124. (in Chinese) [12] ZHAO L, TIAN Z L, PENG Y, et al. Influence of nitrogen and heat input on weld metal of gas tungsten arc welded high nitrogen steel[J]. Journal of Iron and Steel Research (International), 2007, 14(5): 259-262. [13] 马良超, 王大锋, 马冰, 等. 不同氮含量焊丝熔化极气体保护焊高氮钢的微观组织与力学性能[J]. 兵工学报, 2021, 42(6): 1303-1311. MA L C, WANG D F, MA B, et al. Microstructure and mechanical property of high-nitrogen steel with gmaw welding wires with different nitrogen contents[J]. Acta Armamentarii, 42(6): 1303-1311. (in Chinese) [14] ZENG L. Gas metal arc welding of High nitrogen stainless steel with Ar-N2-O2 ternary shielding gas[J]. Defence Technology, 2020, 17(3): 923-931. [15] 明珠, 王克鸿, 王伟, 等.焊丝含氮量及焊接电流对高氮钢焊缝组织和性能影响[J]. 焊接学报, 2019, 40(1): 104-108, 165-166. MING Z, WANG K H, WANG W. et al. Effects of nitrogen content and welding current on microstructure and properties of the weld of high nitrogen austenite steel[J]. Transactions of the China Welding Institution, 2019, 40(1): 104-108, 165-166. (in Chinese) [16] 荆皓, 王克鸿, 强伟, 等. 氮含量对高氮钢PMIG焊接头组织和性能的影响[J]. 焊接学报, 2017, 38(4): 95-98, 133. JING H, WANG K H, QIANG W, et al. Influence of N-content on microstructure and mechanical properties of PMIG welding joints of high nitrogen steel[J]. Transactions of the China Welding Institution, 2017, 38(4): 95-98, 133. (in Chinese) [17] 邓才智, 邓文科, 何蔚. 1 000 MPa级高强钢焊接试验研究[J]. 焊接技术, 2019, 48(8): 38-40, 6. DENG C Z, DENG W K, HE W. Research on welding test of 1 000 MPa grade high strength steel[J]. Welding Technology, 2019, 48(8): 38-40, 6.(in Chinese) [18] 谭伟, 张骅, 韩文政, 等. 提高装甲车辆T型焊接接头疲劳寿命的措施研究[J]. 兵工学报, 2003,24(4): 540-543. TAN W, ZHANG H, HAN W Z, et al. Measures to improve the fatigue lifetime of welded tee joints in armored vehicles[J]. Acta Armamentarii, 2003, 24(4): 549-554.(in Chinese) [19] 王冬生, 谭兵, 王有祁, 等. 616高强钢单双丝MIG焊接性对比研究[J]. 兵器材料科学与工程, 2007,30(4): 24-27. WANG D S, TAN B, WANG Y Q. Contrast research on single/double wire MIG weldability of 616 high strength steel[J]. Ordnance Material Science and Engineering, 2007, 30(4): 24-27. (in Chinese) [20] DOBOSY , LUKACS J. The effect of the filler material choice on the high cycle fatigue resistance of high strength steel welded joints[J].Materials Science Forum, 2017, 885: 111-116. [21] 王伟光, 张天理, 于一帆,等. 高强钢焊接接头显微组织的研究进展[J]. 理化检验:物理分册, 2021, 57(3): 50-55. WANG W G, ZHANG T L, YU Y F, et al. Research progress on microstructure of welded joint of high strength steel[J]. Physica Testing and Chemical Analysis,Part A:Physical Testing, 2021, 57(3): 50-55.(in Chinese) [22] 杨东青, 熊涵英, 黄勇,等. 高氮奥氏体焊丝焊接超高强钢接头组织和性能[J]. 焊接学报, 2020, 41(12): 44-48, 99-100. YANG D Q, XIONG H Y, HUANG Y, et al. Microstructure and properties of ultra-high strength steel joints welded with high nitrogen austenitic wire[J]. Transactions of the China Welding Institution, 2020, 41(12): 44-48, 99-100.(in Chinese)
|