[1] CHEN W, L Y P, ZHANG X Y, et al. Comparing the evolution and deformation mechanisms of lamellar and equiaxed microstructures in near β-Ti alloys during hot deformation[J]. Materials Science and Engineering: A, 2019, 758: 71-78. [2] FAN R L, WU Y, CHEN M H, et al. Relationship among microstructure, mechanical properties and texture of TA32 titanium alloy sheets during hot tensile deformation[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(4): 928-943. [3] HUANG S S, ZHANG J H, MA Y J, et al. Influence of thermal treatment on element partitioning in α+β titanium alloy[J]. Journal of Alloys and Compounds, 2019, 791: 575-585. [4] 郝晓博, 张强, 李渤渤, 等. α+β相区高温退火对Ti80合金板材组织与性能的影响[J]. 材料开发与应用, 2018, 33(1): 49-53. HAO X B, ZHANG Q, LI B B, et al. Effect of high temperature annealing in α+β phase region on microstructure and properties of Ti80 alloy plates [J]. Development and Application of Materials, 2018, 33(1): 49-53.(in Chinese) [5] WANG Q, REN J Q, WU Y K, et al. Comparative study of crack growth behaviors of fully-lamellar and bi-lamellar Ti-6Al-3Nb-2Zr-1Mo alloy[J]. Journal of Alloys and Compounds, 2019, 789: 249-255. [6] XIONG J H, LI S K, GAO F Y, et al. Microstructure and mechanical properties of Ti6321 alloy welded joint by GTAW[J]. Materials Science and Engineering A, 2015, 640: 419-423. [7] 罗锦华, 朱燕丽, 孙小平, 等. 热加工及热处理工艺对Ti80合金棒材组织和性能的影响[J]. 钛工业进展, 2016, 33(2): 20-24. LUO J H, ZHU Y L, SUN X P, et al. Effects of hot working process and heat treatment on microstructures and mechanical properties of Ti80 alloy bars[J]. Titanium Industry Progress, 2016, 33(2): 20-24. (in Chinese) [8] 杨胜利, 孙二举, 刘向前, 等. 热处理工艺对不同组织类型的Ti6321 合金板坯组织与性能的影响[J]. 稀有金属材料与工程, 2020, 49(3): 1002-1008. YANG S L, SUN E J, LIU X Q, et al. Effect of heat treatment on microstructure and properties of Ti6321 alloy slab with different microstructures [J]. Rare Metal Materials and Engineering, 2020, 49(3): 1002-1008. (in Chinese) [9] BOBBILI R, MADHU V. Crystal plasticity modeling of a near alpha titanium alloy under dynamic compression[J]. Journal of Alloys and Compounds, 2018, 759: 85-92. [10] 代华湘, 王琳, 王丁, 等. Ti-5553合金动态拉伸下的力学性能及微结构变化[J]. 兵器材料科学与工程, 2017, 40(1): 84-88. DAI H X, WANG L, WANG D, et al. Mechanical properties and microstructure transformation of Ti-5553 titanium alloy under dynamic tension[J]. Ordnance Material Science and Engineering, 2017, 40(1): 84-88. (in Chinese) [11] ZHENG C, WANG F C, CHENG X W, et al. Failure mechanisms in ballistic performance of Ti-6Al-4V targets having equiaxed and lamellar microstructure[J]. International Journal of Impact Engineering, 2015, 85: 161-169. [12] REN S Y, ZHANG Q M, WU Q, et al. Influence of impact-induced reaction characteristics of reactive composites on hypervelocity impact resistance[J]. Materials and Design, 2020, 192: 108722. [13] 禹富有, 董新龙, 俞鑫炉, 等. 不同填塞装药下金属柱壳断裂特性的实验研究[J]. 兵工学报, 2019, 40(7): 1418-1424. YU F Y, DONG X L, YU X L, et al. Fracture characteristics of metal cylinder shells with different charges[J]. Acta Armamentarii, 2019, 40(7): 1418-1424. (in Chinese) [14] REN Y, XUE Z Y, YU X D, et al. Spall strength and fracture behavior of Ti-10V-2Fe-3Al alloy during one-dimensional shock loading[J]. International Journal of Impact Engineering, 2017, 111: 77-84. [15] PEIRS J, VERLEYSEN P, DEGRIECK J, et al. The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V[J]. International Journal of Impact Engineering, 2010, 37(6): 703-714. [16] WANG B F, YANG Y, CHEN Z P, et al. Adiabatic shear bands in α-titanium tube under external explosive loading[J]. Journal of Materials Science, 2007, 42(19): 8101-8105. [17] TAN J, LU L, LI H Y, et al. Anisotropic deformation and da-mage of dual-phase Ti-6Al-4V under high strain rate loading[J]. Materials Science and Engineering: A, 2019, 742: 532-539. [18] JACOB N, NURICK G N, LANGDON G S. The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads[J]. Engineering Structures, 2007, 29(10): 2723-2736. [19] FALLAH A S, MICALLEF K, LANGDON G S, et al. Dynamic response of Dyneema HB26 plates to localised blast loading[J]. International Journal of Impact Engineering, 2014, 73: 91-100. [20] LI J Q, XU X Z, DUAN Y, et al. Fracture mechanism of steel plate loaded by explosive-induced shock waves[J]. Engineering Failure Analysis, 2019, 101: 243-256. [21] GEFFROY A G, LONGRE P, LEBL B. Fracture analysis and constitutive modelling of ship structure steel behaviour regarding explosion[J]. Engineering Failure Analysis, 2011, 18(2):670-681. [22] MCDONALD B, BORNSTEIN H, LANGDON G S, et al. Experimental response of high strength steels to localised blast loading[J]. International Journal of Impact Engineering, 2018, 115: 106-119. [23] RAN C, SHENG Z M, CHEN P W, et al. Effect of microstructure on the mechanical properties of Ti-5Al-5Mo-5V-1Cr-1Fe alloy[J]. Materials Science and Engineering A, 2020, 773: 138728. [24] REN Y, TAN C W, ZHANG J, et al. Dynamic fracture of Ti-6Al-4V alloy in Taylor impact test[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(2): 223-235. [25] MEYERS M A. Dynamic behavior of materials[M]. New York, NY, US: John Wiley & Sons, 1994: 98-123, 523-524. [26] 宁子轩, 王琳, 程兴旺, 等. 分离式霍普金森压杆加载下不同组织Ti-6321钛合金的动态响应行为[J]. 兵工学报, 2021, 42(4): 862-870. NING Z X, WANG L, CHENG X W, et al. Dynamic response behavior of Ti-6321 titanium alloys with different microstructures under split Hopkinson pressure bar loading[J]. Acta Armamentarii, 2021, 42(4): 862-870. (in Chinese)
|