[1] ZHOU W Y, KOU Y J,YUAN M X, et al. Polymer composites filled with core@double-shell structured fillers: effects of multiple shells on dielectric and thermal properties[J]. Composites Science and Technology, 2019, 181: 107686. [2] 王文豪, 毕世华, 向红军. 电磁驱动式引信过载试验装置中的电磁防护研究[J]. 兵工学报, 2016, 37(5): 909-915. WANG W H, BI S H, XIANG H J. Electromagnetic shielding of overload experiment device for fuze based on electromagnetic driving technology[J]. Acta Armamentarii, 2016, 37(5): 909-915. (in Chinese) [3] LI Y,TIAN X,GAO S P, et al. Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication[J]. Advanced Functional Materials, 2020, 30(5): 1907451. [4] FAISAL S,MOHAMED A,CHRISTINE H, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. [5] 刘伟, 贾琨, 谷建宇, 等. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 31-35. LIU W, JIA K, GU J Y, et al. The preparation of Ag/graphene composite film for thermal conduction and electromagnetic interference shielding[J]. Materials Reports, 2022, 36(9): 31-35. (in Chinese) [6] CHEN Y, ZHANG H B, YANG Y B, et al. High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding[J]. Advanced Functional Materials, 2016, 26(3): 447-455. [7] 马艺涛, 谢金钊, 武高健, 等. 电磁屏蔽特种工程塑料制备及应用研究进展[J]. 高分子材料科学与工程, 2021, 37(10): 183-190. MA Y T, XIE J Z, WU G J, et al. Progress in preparation and application of electromagnetic shielding special engineering plastics [J]. Polymer Materials Science & Engineering, 2021, 37(10): 183-190. (in Chinese) [8] ZHAO B,ZHAO C X,LI R S, et al. Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly(vinylidene fluoride)/carbon composite films[J]. ACS Applied Materials Interfaces, 2017, 9(24): 20873-20884. [9] 李尉, 任会兰, 宁建国, 等. 锆/聚四氟乙烯活性材料的动态压缩特性[J]. 兵工学报, 2020, 41(S2): 56-62. LI W, REN H L, NING J G, et al. Dynamic compression characteristics of zirconium/ polytetrafluoroethylene reactive material[J]. Acta Armamentarii, 2020, 41(S2): 56-62. (in Chinese) [10] GUIDERDONI C,PAVLENKO E,TURQ V, et al. The preparation of carbon nanotube (CNT)/copper composites and the effect of the number of CNT walls on their hardness, friction and wear properties[J]. Carbon, 2013, 58: 185-197. [11] 尹富强, 赵玉辰, 李赵春. 镓基液态金属应用的研究进展[J]. 现代化工, 2022, 42(5): 24-29. YIN F Q, ZHAO Y C, LI Z C. Advances on application of gallium-based liquid metal[J]. Modern Chemical Industry, 2022, 42(5): 24-29. (in Chinese) [12] 周正峰, 王猛. 电驱动碳黑/液态金属/液晶弹性体复合薄膜[J]. 功能高分子学报, 2022, 35(4): 357-364. ZHOU Z F, WANG M. Electro-driven carbon black/liquid metal/liquid crystal elastomer composite film[J]. Journal of Functional Polymers, 2022, 35(4): 357-364. (in Chinese) [13] HOSHYARGAR F,CRAWFORD J,O'MULLANE A P. Galvanic replacement of the liquid metal galinstan[J]. Journal of the American Chemical Society, 2017, 139(4): 1464-1471. [14] REN L,CHENG N Y,MAN X K, et al. General programmable growth of hybrid core-shell nanostructures with liquid metal nanodroplets[J]. Advanced Materials, 2021, 33(11): 2008024. [15] LI Y, FENG S, CAO S, et al. Printable liquid metal microparticle ink for ultrastretchable electronics[J]. ACS Applied Materials & Interfaces, 2020, 12(45): 50852-50859 [16] CHEN D,QIAO X,QIU X, et al. Large-scale synthesis of silver nanowires via a solvothermal method[J]. Journal of Materials Science, 2011, 22(1): 6-13. [17] ZHANG W,NAIDU B S, OU J Z, et al. Liquid metal/metal oxide frameworks with incorporated Ga2O3 for photocatalysis[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1943-1948. [18] 孔静, 高鸿, 李岩, 等. 电磁屏蔽机理及轻质宽频吸波材料的研究进展[J]. 材料导报, 2020, 34(9): 9055-9063. KONG J, GAO H, LI Y, et al. Research progress of electromagnetic shielding mechanism and lightweight and broadband wave-absorbing materials[J]. Materials Reports, 2020, 34(9): 9055-9063. (in Chinese) [19] GONG S,SHENG X X,LI X L, et al. A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “Brick-Mortar” sandwich structure[J]. Advanced Functional Materials, 2022, 32(26): 2200570. [20] CHEN Z P,XU C,MA C Q, et al. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding[J]. Advanced Materials, 2013, 25(9): 1296-1300.
|