| 
 [1]  Chou  P C, Schaller R, Hoburg J. Analytical study of the fracture of liquid-filled tanks impacted by hypervelocity particles, DIT Report 160-9 [R]. Philadelphia, PA, US: Drexel Institute of Technology, 1967: 2-10.
 [2]  Lee  M, Longoria R G, Wilson D E. Ballistic waves in high-speed water entry[J]. Journal of Fluids and Structures, 1997, 11(7): 819-844.
 [3]  Deletombe  E, Fabis J, Dupas J, et al. Experimental analysis of 7.62 mm hydrodynamic ram in containers [J]. Journal of Fluids and Structures,2013, 37(2):1-21.
 [4]  Varas  D, López-Puente J, Zaera R. Experimental analysis of fluid-filled aluminium tubes subjected to high-velocity impact [J]. International Journal of Impact Engineering, 2009, 36(1): 81-91.
 [5]  Varas  D, Zaera R, López-Puente J. Numerical modelling of partially filled aircraft fuel tanks submitted to hydrodynamic ram [J]. Aerospace Science and Technology, 2012, 16(1): 19-28.
 [6]  Townsend  D, Park N, Devall P M. Failure of fluid filled structures due to high velocity fragment impact[J]. International Journal of Impact Engineering, 2003, 29(1/2/3/4/5/6/7/8/9/10): 723-733.
 [7]  Liu  F, Kong X S, Zheng C, et al. The influence of rubber layer on the response of fluid-filled container due to high-velocity impact [J]. Composite Structures, 2018, 183:671-681.
 [8]  Sarlin  E, Apostol M, Lindroos M, et al. Impact properties of novel corrosion resistant hybrid structures [J]. Composite Structures, 2014, 108: 886-893.
 [9]  Tasdemircl  A, Tunusoglu G, Güden M. The effect of the interlayer on the ballistic performance of ceramic/composite armors: experimental and numerical study [J]. International Journal of Impact Engineering, 2012, 44(3): 1-9.
 
 [10]  范志强. PVDF压力测量特性与水下爆炸近场多孔金属夹芯板动力响应的研究[D]. 合肥: 中国科学技术大学, 2015.
 FAN Zhi-qiang. Characteristics of pressure measurements using PVDF gauge and the dynamic response of metallic sandwich panels subjected to proximity underwater explosion[D]. Hefei: University of Science and Technology of China, 2015. (in Chinese)
 
 [11]  Lloyd  R M. Conventional warhead systems physics and engineering design[M]. Reston, VA, US: AIAA, 1998: 20-35.
 [12]  王鹏飞. 偏心起爆战斗部相关技术研究[D]. 北京: 北京理工大学, 2015.
 WANG Peng-fei. Research on the eccentric initiation warhead[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese)
 
 [13]  Danel  J F, Kazandjian L. A few remarks about the gurney energy of condensed explosives[J]. Propellants, Explosives, Pyrotechnics, 2004, 29(5): 314-326.
 [14]  周保顺, 张立恒, 王少龙, 等. TNT炸药爆炸冲击波的数值模拟与实验研究[J]. 弹箭与制导学报, 2010, 30(3): 88-90.
 ZHOU Bao-shun, ZHANG Li-heng, WANG Shao-long, et al. Numerical simulation and experimental research on TNT explosion shock wave[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(3): 88-90. (in Chinese)
 
 [15]  Hutchinson  M D. The escape of blast from fragmenting munitions casings[J]. International Journal of Impact Engineering, 2009, 36(2): 185-192.
 [16]  沈慧铭, 李伟兵, 王晓鸣,等. 圆柱壳体装药偏心多点起爆下破片速度的分布[J]. 爆炸与冲击,2017,37(6): 1039-1045.
 SHEN Hui-ming, LI Wei-bing, WANG Xiao-ming, et al. Velocity distribution of fragments resulted by explosion of a cylindrical shell charge on multi-spots eccentric initiation[J].Explosion and Shock Waves, 2017,37(6): 1039-1045. (in Chinese)
 
 [17]  仲强, 侯海量, 朱锡, 等. 陶瓷/液舱复合结构抗侵彻数值分析[J]. 爆炸与冲击, 2017, 37(3): 510-519.
 ZHONG Qiang, HOU Hai-liang, ZHU Xi,et al. Numerical analysis  of penetration resistance of ceramic/fluid composite structure [J]. Explosion and Shock Waves, 2017, 37(3): 510- 519. (in Chinese)
 [18]  孔祥韶. 大型水面舰艇舷侧防护结构内爆的数值模拟研究[D]. 武汉: 武汉理工大学, 2009.
 KONG Xiang-shao . Research on response simulation of war-ship broadside protective structure under inner explosion[D]. Wuhan: Wuhan University of Technology, 2009. (in Chinese)
 [19]  张钟文. 橡胶填充异型夹层结构抗射流侵彻研究[D]. 南京: 南京理工大学, 2013.
 ZHANG Zhong-wen. Study on the effects of composite armor with corrugated sandwich against the shaped charge jet penetration[D]. Nanjing: Nanjing University of Science and Technology, 2013. (in Chinese)
 [20]  唐廷, 朱锡, 侯海量, 等. 大型水面舰艇防雷舱结构防护机理数值仿真[J]. 哈尔滨工程大学学报, 2012, 33(2): 142-149.
 TANG Ting, ZHU Xi, HOU Hai-liang, et al. Numerical simulation study on the defense mechanism of a cabin near the shipboard for large surface vessels[J]. Journal of Harbin Engineering University, 2012, 33(2): 142-149. (in Chinese)
 
 [21]  李营. 液舱防爆炸破片侵彻作用机理研究[D]. 武汉: 武汉理工大学, 2014.
 LI Ying. Fragment resistant mechanism research of safety liquid cabin[D]. Wuhan: Wuhan University of Technology, 2014. (in Chinese)
 
 [22]  朱锡, 冯刚, 张振华. 爆炸载荷作用下固支方板的应变场及破坏分析[J]. 船舶力学, 2005, 9(2): 83-89.
 ZHU Xi, FENG Gang, ZHANG Zhen-hua. Strain field and damage  analysis of clamped sguare plates subjected to explosive loading[J]. JournaI of Ship Mechanics, 2005, 9(2): 83-89. (in Chinese)
 
 [23]  陈闯, 王晓鸣, 李文彬, 等. 多层介质阻抗匹配对隔爆效果的影响[J]. 振动与冲击, 2014,33(17): 105-110.
 CHEN Chuang, WANG Xiao-ming, LI Wen-bin, et al. Influence of multilayered media impedance matching on explosion interruption effect[J]. Jouranal of Vibration and Shock, 2014,33(17):  105-110. (in Chinese)
 
 
 
 
 第39卷第12期
 2018  年12月兵工学报ACTA
 ARMAMENTARIIVol.39No.12Dec. 2018
 
 
 |