[1] |
赵振宇, 周贻来, 任建伟, 等. 浅埋炸药爆炸形貌及其冲击作用效应[J]. 爆炸与冲击, 2022, 42(4):52-64.
|
|
ZHAO Z Y, ZHOU Y L, REN J W, et al. Explosion morphology and impacting effects of shallow-buried explosives[J]. Explosion and Shock Waves, 2022, 42(4):52-64. (in Chinese)
|
[2] |
GRUJICIC M, PANDURANGAN B, MOCKO G M, et al. A combined multi-material Euler/Lagrange computational analysis of blast loading resulting from detonation of buried landmines[J]. Multidipline Modeling in Materials Structures, 2006, 4(2): 105-124.
|
[3] |
GRUJICIC M, PANDURANGAN B, HARIHARAN A. Comparative discrete-particle versus continuum-based computational investigation of soil response to impulse loading[J]. Journal of Materials Engineering and Performance, 2011, 20(9): 1520-1535.
doi: 10.1007/s11665-011-9844-0
URL
|
[4] |
GRUJICIC M, YAVARI R, SNIPES J, et al. A combined finite-element/discrete-particle analysis of a side-vent-channel-based concept for improved blast-survivability of light tactical vehicles[J]. International Journal of Structural Integrity, 2016, 7(1): 106-141.
doi: 10.1108/IJSI-12-2014-0068
URL
|
[5] |
梁茜, 王仲琦, 刘廷军, 等. 浅埋爆炸近场荷载特征研究[J]. 兵器装备工程学报, 2022, 43(12):207-214.
|
|
LIANG X, WANG Z Q, LIU T J, et al. Study on near field load characteristics of shallow buried explosion[J]. Journal of Ordnance Equipment Engineering, 2022, 43(12):207-214. (in Chinese)
|
[6] |
ZHAO Z Y, ZHANG D J, CHEN W J, et al. An analytical model of blast resistance for all-metallic sandwich panels subjected to shallow-buried explosives[J]. International Journal of Mechanics and Materials in Design, 2022, 18: 873-892.
doi: 10.1007/s10999-022-09605-w
|
[7] |
金泽宇, 殷彩玉, 谌勇, 等. 分层泡沫铝夹芯球壳对近场水下爆炸的响应[J]. 兵工学报, 2017, 38(增刊1):42-48.
|
|
JIN Z Y, YIN C Y, CHEN Y, et al. Responses of spherical sandwich shells with sraded aluminum foam cores subjected to near-field underwater explosion[J]. Acta Armamentarii, 2017, 38(S1):42-48. (in Chinese)
|
[8] |
REN L J, MA H H, SHEN Z W, et al. Blast response of water-backed metallic sandwich panels subject to underwater explosion experimental and numerical investigations[J]. Composite Structures, 2019, 209:79-92.
doi: 10.1016/j.compstruct.2018.10.082
URL
|
[9] |
FAN Z Q, LIU Y B, PENG X A. Blast resistance of metallic sandwich panels subjected to proximity underwater explosion[J]. International Journal of Impact Engineering, 2016, 93:128-135.
doi: 10.1016/j.ijimpeng.2016.03.001
URL
|
[10] |
钟云岭, 郭香华, 张庆明. 冲击波在泡沫铝复合结构中的衰减特性理论分析[J]. 兵工学报, 2014, 35(增刊2):322-327.
|
|
ZHONG Y L, GUO X H, ZHANG Q M. Study of the attenuation of shock wave in aluminum foam composite structures[J]. Acta Armamentarii, 2014, 35(S2):322-327. (in Chinese)
|
[11] |
梁民族, 卢芳云, 李翔宇, 等. 爆炸载荷下双层泡沫铝动态响应和能量吸收[J]. 兵工学报, 2016, 37(增刊2):236-240.
|
|
LIANG M Z, LU F Y, LI X Y, et al. Dynamic response and energy absorption of double-layered aluminum foam under blast loading[J]. Acta Armamentarii, 2016, 37(S2):236-240. (in Chinese)
|
[12] |
ISLAM M A, BROWN A D, HAZELL P J. et al. Mechanical response and dynamic deformation mechanisms of closed-cell aluminium alloy foams under dynamic loading[J]. International Journal of Impact Engineering, 2018, 114: 111-122.
doi: 10.1016/j.ijimpeng.2017.12.012
URL
|
[13] |
LIU H, CAO Z K, YAO G C, et al. Performance of aluminum foam-steel panel sandwich composites subjected to blast loading[J]. Materials and Design, 2013, 472013:483-488.
|
[14] |
ZHANG J H, CHEN L, WU H, et al. Experimental and mesoscopic investigation of double-layer aluminum foam under impact loading[J]. Composite Structures, 2020, 24: 110859.
|
[15] |
SUN G Y, WANG E D, ZHANG J T, et al. Experimental study on the dynamic responses of foam sandwich panels with different facesheets and core gradients subjected to blast impulse[J]. International Journal of Impact Engineering, 2020, 135:103327.
doi: 10.1016/j.ijimpeng.2019.103327
URL
|
[16] |
李永池, 姚磊, 沈俊, 等. 空穴的绕射隔离效应和对后方应力波的削弱作用[J]. 爆炸与冲击, 2005, 25(3): 193-199.
|
|
LI Y C, YAO L, SHEN J, et al. Insulation effect of the cavity on stress wave[J]. Explosion and Shock Waves, 2005, 25(3): 193-199. (in Chinese)
doi: 10.1007/BF00742016
URL
|
[17] |
高光发. 防护工程中若干规律性问题的研究和机理分析[D]. 合肥: 中国科学技术大学, 2010.
|
|
GAO G F. Research on several scientific rules in protective engineering and the mechanism analysis[D]. Hefei: University of Science and Technology of China, 2010. (in Chinese)
|
[18] |
范志强, 马宏昊, 沈兆武, 等. PVDF压力计在结构表面爆炸压力测量中的应用技术研究[J]. 兵工学报, 2014, 35(增刊2):27-32.
|
|
FAN Z Q, MA H H, SHEN Z W, et al. Investigation on application of pvdf gauges in blast pressure measurement on structure surfaces[J]. Acta Armamentarii, 2014, 35(S2):27-32. (in Chinese)
|
[19] |
任丽杰. 近场水下爆炸加载下水背固支多孔金属加芯板动力响应研究[D]. 合肥: 中国科学技术大学, 2019.
|
|
REN L J. Dynamic response of water—backed metallic sandwich panels subjected to proximity underwater explosion[D]. Hefei: University of Science and Technology of China, 2019. (in Chinese)
|
[20] |
胡亚峰, 刘建青, 顾文彬, 等. PVDF应力测试技术及其在多孔材料爆炸冲击实验中的应用[J]. 爆炸与冲击, 2016, 36(5):655-662.
|
|
HU Y F, LIU J Q, GU W B, et al. Stress-testing method by PVDF gauge and its application in explosive test of porous material[J]. Explosion and Shock Waves, 2016, 36(5):655-662. (in Chinese)
|
[21] |
NURICK G N, LANGDON G S, CHI Y, et al. Behaviour of sandwich panels subjected to intense air blast-Part l:experiments[J]. Composite Structures, 2009, 91(4):433-441.
doi: 10.1016/j.compstruct.2009.04.009
URL
|
[22] |
NURICK G N, SHAVE G C. The deformation and tearing of thin square plates subjected to impulsive loads-an experimental study[J]. International Journal of Impact Engineering, 1996, 18(1):99-116.
doi: 10.1016/0734-743X(95)00018-2
URL
|
[23] |
NURICK G N, MARTIN J B. Deformation of thin plates subjected to impulsive loading-a review:Part I:theoretical considerations[J]. International Journal of Impact Engineering, 1989, 8(2):159-70.
|
[24] |
REN L J, MA H H, SHEN Z W, et al. Blast resistance of water-backed metallic sandwich panels subjected to underwater explosion[J]. International Journal of Impact Engineering, 2019, 129:1-11.
doi: 10.1016/j.ijimpeng.2019.02.009
URL
|
[25] |
张鹏飞, 刘志芳, 李世强. 内爆炸载荷下梯度泡沫铝夹芯管的动态响应[J]. 爆炸与冲击, 2020, 40(7):17-26.
|
|
ZHANG P F, LIU Z F, LI S Q. Dynamic response of sandwich tubes with graded foam aluminum cores under internal blast loading[J]. Explosion and Shock Waves, 2020, 40(7):17-26. (in Chinese)
doi: 10.1023/B:CESW.0000013664.72373.c5
URL
|
[26] |
ARIEF N P, SIGIT P S, LEONARDO G, et al. Numerical study and experimental validation of blastworthy structure using aluminum foam sandwich subjected to fragmented 8 kg TNT blast loading[J]. International Journal of Impact Engineering, 2020, 146:103699.
doi: 10.1016/j.ijimpeng.2020.103699
URL
|