欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2023, Vol. 44 ›› Issue (4): 960-971.doi: 10.12382/bgxb.2022.0009

• • 上一篇    下一篇

基于双参数自适应优化的无人履带车辆轨迹跟踪控制

卢佳兴, 刘海鸥*(), 关海杰, 李德润, 陈慧岩, 刘龙龙   

  1. 北京理工大学 机械与车辆学院, 北京 100081
  • 收稿日期:2022-01-01 上线日期:2023-04-28
  • 通讯作者:

Trajectory Tracking Control of Unmanned Tracked Vehicles Based on Adaptive Dual-Parameter Optimization

LU Jiaxing, LIU Haiou*(), GUAN Haijie, LI Derun, CHEN Huiyan, LIU Longlong   

  1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2022-01-01 Online:2023-04-28

摘要:

为解决定参数轨迹跟踪控制器工况适应性差的问题,基于改进粒子群优化(IPSO)、多层感知机(MLP)算法,设计一种双参数自适应优化的无人履带车辆轨迹跟踪控制算法。离线状态下,基于采集的实车数据,以轨迹跟踪的高精度、高稳定性、低时间成本为目标,利用IPSO算法构建了不同运动基元下的最优参数组合数据集,并以运动基元类型和车速等为特征向量,控制时域长度、时间步长为标签,采用学习率自适应优化算法完成MLP神经网络模型的训练。在线状态下,根据规划层下发的轨迹信息和车辆状态反馈信息,由MLP神经网络输出预测的最优控制时域长度和控制时间步长,作为双参数输入到模型预测控制算法中,完成自适应轨迹跟踪控制。基于ROS-VREP的联合仿真和基于双侧独立电驱动履带平台进行实车试验。研究结果表明,在包含大曲率转向的综合工况下,与相同计算时间成本的定参数轨迹跟踪控制算法相比,所设计的轨迹跟踪控制器横向偏差均值、航向偏差均值以及转角变化率均值分别降低了30.5%、17.2%、7.8%,证明了算法的可行性和有效性。

关键词: 履带车辆, 轨迹跟踪控制, 改进粒子群优化算法

Abstract:

To improve the poor adaptability of trajectory tracking controllers with fixed parameters, an optimized adaptive dual-parameter trajectory tracking algorithm for unmanned tracked vehicles based on the improved Particle Swarm Optimization (IPSO) and Multi-Layer Perceptron (MLP) algorithms is proposed. In the offline state, based on the collected actual vehicle data, the IPSO algorithm is used to construct the optimal parameter data set under different motion primitives, aiming for high accuracy, high stability, and low time cost of trajectory tracking. With the motion primitive type and vehicle speed as feature vectors, control time domain length and control time step length as labels, adaptive learning rate optimization algorithm is used to complete the training of the MLP neural network model. In the online state, according to the trajectory information and vehicle state feedback information provided by the planning layer, the MLP neural network outputs the predicted optimal control time domain length and control time step. These parameters are then input to the model predictive controller as dual parameters, enabling the adaptive trajectory tracking control. ROS-VREP co-simulation test and actual vehicle test based on a bilateral electric drive platform are carried out. Vehicle test results show that under various working conditions including large curvature steering, the proposed controller achieves a 30.5% reduction in average lateral error, a 17.2% decrease in average heading error, and a 7.8% reduction in average change rate of rotation angle, compared with the fixed-parameter trajectory tracking control method with the same calculation time cost. The results verify the feasibility and effectiveness of the new algorithm.

Key words: tracked vehicle, trajectory tracking control, improved PSO algorithm