[1] |
Boston Dynamics. Introducing Spot (previouslySpotMini[EB/OL]. (2016-06-23)[2023-12-03]. https://www.youtube.com/watch?v=tf7IEVTDjng.
|
[2] |
Boston Dynamics. Cheetah robot runs 28.3 mph; a bit faster than Usain Bolt[EB/OL]. (2012-09-06) [2023-12-03]. https://www.youtube.com/watch?v=chPanW0QWhA&t=7s.
|
[3] |
Boston Dynamics. LS3-Legged Squad Support System[EB/OL]. (2012-09-11)[2023-12-03]. https://www.youtube.com/watch?v=R7ezXBEBE6U.
|
[4] |
PARK H W, WENSING P M, KIM S. Online planning for autonomous running jumps over obstacles in high-speed quadrupeds[C]// Proceedings of the 11st Robotics Science and Systems. Rome, Italy: MIT, 2015:1-9.
|
[5] |
HYUN D J, SEOK S, LEE J, et al. High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah[J]. The International Journal of Robotics Research, 2015, 33(11):1417-1445.
doi: 10.1177/0278364914532150
URL
|
[6] |
PARK H W, CHUAH M Y, KIM S, et al. Quadruped bounding control with variable duty cycle via vertical impulse scaling[C]// Proceedings of the 26th Intelligent Robots and Systems. Chicago, IL, US: IEEE, 2014:3245-3252.
|
[7] |
DI C J, WENSING P M, KATZ B, et al. Dynamic locomotion in the mit cheetah 3 through convex model-predictive control[C]// Proceedings of the 30th Intelligent Robots and Systems. Madrid, Spain:IEEE, 2018: 1-9.
|
[8] |
KIM D, DI C J, KATZ B, et al. Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control[DB/OL]. (2019-09-14) [2023-12-03]. https://arxiv.org/abs/2110.02799.
|
[9] |
GEHRING C, COROS S, HUTTER M, et al. Control of dynamic gaits for a quadrupedal robot[C]// Proceedings of the 29th International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013:3287-3292.
|
[10] |
GEHRING C, BELLICOSO C D, COROS S, et al. Dynamic trotting on slopes for quadrupedal robots[C]// Proceedings of the 27th Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015:5129-5135.
|
[11] |
BJELONIC M, GRANDIA R, GEILINGER M, et al. Offline motion libraries and online MPC for advanced mobility skills[J]. The International Journal of Robotics Research, 2022, 41(9/10): 903-924.
doi: 10.1177/02783649221102473
URL
|
[12] |
MIKI T, LEE J, HWANGBO J, et al. Learning robust perceptive locomotion for quadrupedal robots in the wild[J]. Science Robotics, 2022, 7(62): eabk2822.
doi: 10.1126/scirobotics.abk2822
URL
|
[13] |
HWANGBO J, LEE J, DOSOVITSKIY A, et al. Learning agile and dynamic motor skills for legged robots[J]. Science Robotics, 2019, 4(26): eaau5872.
doi: 10.1126/scirobotics.aau5872
URL
|
[14] |
LEE J, HWANGBO J, WELLHAUSEN L, et al. Learning quadrupedal locomotion over challenging terrain[J]. Science Robotics, 2020, 5(47): eabc5986.
doi: 10.1126/scirobotics.abc5986
URL
|
[15] |
梁启星, 李彬, 李志, 等. 基于模型预测控制的四足机器人斜坡自适应调整算法与实现[J]. 山东大学学报 (工学版), 2021, 51(3): 37-44.
|
|
LIANG Q X, LI B, LI Z, et al. Algorithm of adaptive slope adjustment of quadruped robot based on model predictive control and its application[J]. Journal of Shandong University(Engineering Science), 2021, 51(3): 37-44. (in Chinese)
|
[16] |
HAN K C, KIM J Y. Posture stabilizing control of quadruped robot based on cart-inverted pendulum model[J]. Intelligent Service Robotics, 2023, 16:521-536.
doi: 10.1007/s11370-023-00480-8
|
[17] |
SOMBOLESTAN M, NGUYEN Q. Hierarchical adaptive loco-manipulation control for quadruped robots[C]// Proceedings of the 39th International Conference on Robotics and Automation.London, UK: IEEE, 2023:12156-12162.
|
[18] |
张国腾, 荣学文, 李贻斌, 等. 基于虚拟模型的四足机器人对角小跑步态控制方法[J]. 机器人, 2016, 38(1): 64-74.
doi: 10.13973/j.cnki.robot.2016.0064
|
|
ZHANG G T, RONG X W, LI Y B, et al. Control of the quadrupedal trotting based on virtual model[J]. Robot, 2016, 38(1): 64-74.(in Chuese)
doi: 10.13973/j.cnki.robot.2016.0064
|
[19] |
ZHAO J X, YAO Q C, XING B Y, et al. One-legged hop of compliance control based on minimum-jerk[J]. Journal of Physics Conference Series, 2020, 1507(5): 052012.
doi: 10.1088/1742-6596/1507/5/052012
|
[20] |
孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3):28-34.
|
|
MENG J, LI Y B, LI B, et al. Bound gait controlling method of quadruped robot[J]. Journal of Shandong University (Engineering Science), 2015, 45(3):28-34. (in Chinese)
|
[21] |
PARK H W, PARK S, KIM S. Variable-speed quadrupedal bounding using impulse planning:Untethered high-speed 3D Running of MIT Cheetah 2[C]// Proceedings of the 31st International Conference on Robotics and Automation. Seattle, WA, US: IEEE, 2015: 5163-5170.
|
[22] |
BJELONIC M. Planning and control for hybrid locomotion of wheeled-legged robots[D]. ETH Zurich, 2021.
|
[23] |
HOELLER D, RUDIN N, SAKO D, et al. Learning agile navigation for quadrupedal robots[DB/OL]. (2023-06-26) [2023-12-03]. https://arxiv.org/abs/2306.14874.
|
[24] |
HAN L, ZHU Q, SHENG J, et al. Lifelike agility and play on quadrupedal robots using reinforcement learning and generative pre-trained models[DB/OL]. (2023-08-29) [2023-12-03]. https://arxiv.org/abs/2308.15143.
|
[25] |
NGUYEN Q, POWELL M J, KATZ B, et al. Optimized jumping on the mit cheetah 3 robot[C]// Proceedings of the 35th International Conference on Robotics and Automation. Montreal, Canada: IEEE, 2019: 7448-7454.
|
[26] |
CHIGNOLI M M T. Trajectory optimization for dynamic aerial motions of legged robots[D]. Cambridge, MA, US:MIT, 2021.
|