兵工学报 ›› 2023, Vol. 44 ›› Issue (1): 117-128.doi: 10.12382/bgxb.2022.0803
所属专题: 特种车辆理论与技术
帅志斌*(), 贺帅, 李国辉, 李耀恒, 李勇, 张颖, 简洪超
收稿日期:
2022-09-13
上线日期:
2023-02-10
通讯作者:
基金资助:
SHUAI Zhibin*(), HE Shuai, LI Guohui, LI Yaoheng, LI Yong, ZHANG Ying, JIAN Hongchao
Received:
2022-09-13
Online:
2023-02-10
摘要:
针对极低温环境下,特种履带车辆机电复合传动装置冷启动时间长的问题,提出一种新型的机电复合传动装置低温快速启动方案,通过对主要加热部件能量转换过程的分析,构建低温启动过程中液压油温升的数学模型。通过控制不同加热部件的功率和加热时机,建立多约束条件下的两种低温启动控制策略:基于规则的策略和基于动态规划的策略,设计多目标优化的指标函数,实现在动力电池能量、加热部件功率等多约束下的最优启动控制。仿真结果表明:多部件加热的低温快速启动方案具备可行性,所提出的启动策略能够实现预期的控制目标;基于动态规划的策略可缩短12.6%的启动时间,同时启动过程耗能降低11.9%,有助于提升机电复合传动装置低温启动的综合效能。
中图分类号:
帅志斌, 贺帅, 李国辉, 李耀恒, 李勇, 张颖, 简洪超. 特种履带车辆机电复合传动装置低温启动过程建模与优化控制[J]. 兵工学报, 2023, 44(1): 117-128.
SHUAI Zhibin, HE Shuai, LI Guohui, LI Yaoheng, LI Yong, ZHANG Ying, JIAN Hongchao. Modeling and Optimal Control of Low-Temperature Starting Process of Electro-Mechanical Transmission for Special Tracked Vehicles[J]. Acta Armamentarii, 2023, 44(1): 117-128.
油温区间 | θ0≤θ1<θth | θth≤θ1<θf | θ1≥θf |
---|---|---|---|
θ0≤θ2<θf | Po=Phm Pd=Pdm | Po(Tmm,n) Pd=Pdm | Po=0 Pd=Pdm |
θ2≥θf | Po=Phm Pd=0 | Po(Tmm,n) Pd=0 | Po=0 Pd=0 |
表1 基于规则的低温启动过程控制策略表
Table 1 Rule-based control strategy of cold-starting process
油温区间 | θ0≤θ1<θth | θth≤θ1<θf | θ1≥θf |
---|---|---|---|
θ0≤θ2<θf | Po=Phm Pd=Pdm | Po(Tmm,n) Pd=Pdm | Po=0 Pd=Pdm |
θ2≥θf | Po=Phm Pd=0 | Po(Tmm,n) Pd=0 | Po=0 Pd=0 |
参数 | 数值 |
---|---|
母线电压/V | 900 |
电池容量/(A·h) | 10 |
电池低温最大功率/kW | 10 |
液压油比热容/(kJ·kg-1·K-1) | 1.88 |
油泵电机最大功率/kW | 4 |
初始油温/℃ | -43 |
油箱内油体积/L | 20 |
油底壳油体积/L | 10 |
齿轮油泵排量/(mL·r-1) | 20 |
驱动电机最大产热功率/kW | 10 |
油泵电机最大转矩/(N·m) | 29.6 |
液压油牌号 | 5W |
表2 低温启动仿真参数设置
Table 2 Simulation parameters for cold-starting process
参数 | 数值 |
---|---|
母线电压/V | 900 |
电池容量/(A·h) | 10 |
电池低温最大功率/kW | 10 |
液压油比热容/(kJ·kg-1·K-1) | 1.88 |
油泵电机最大功率/kW | 4 |
初始油温/℃ | -43 |
油箱内油体积/L | 20 |
油底壳油体积/L | 10 |
齿轮油泵排量/(mL·r-1) | 20 |
驱动电机最大产热功率/kW | 10 |
油泵电机最大转矩/(N·m) | 29.6 |
液压油牌号 | 5W |
控制策略 | 主要参数设置 | 说明 |
---|---|---|
1 | Tm=29.6N·m | 油泵电机工作在电动模式,驱动电机不参与低温启动 |
2 | Tm=29.6N·m Pd=Pbm-Po | 油泵电机工作在电动模式,驱动电机在电池放电功率约束下以最大功率发热 |
3 | Phm=1kW θth=-35℃ | 基于规则的低温启动策略 |
4 | Phm=1kW; α=4.8;β=15; γ=0.06;κ=1 | 基于动态规划的低温启动策略 |
表3 4种低温启动控制策略及其参数设置
Table 3 Four cold-starting strategies and parameters settings
控制策略 | 主要参数设置 | 说明 |
---|---|---|
1 | Tm=29.6N·m | 油泵电机工作在电动模式,驱动电机不参与低温启动 |
2 | Tm=29.6N·m Pd=Pbm-Po | 油泵电机工作在电动模式,驱动电机在电池放电功率约束下以最大功率发热 |
3 | Phm=1kW θth=-35℃ | 基于规则的低温启动策略 |
4 | Phm=1kW; α=4.8;β=15; γ=0.06;κ=1 | 基于动态规划的低温启动策略 |
控制策略 | 启动时间/s | 总能耗/kWh |
---|---|---|
1 | >2000 | 未完成启动,忽略 |
2 | 1009 | 0.67 |
3 | 631 | 0.61 |
4 | 882 | 0.59 |
表4 4种控制策略的低温启动时间与能耗比较
Table 4 Comparison of cold-startingtimeand energy consumption of the four strategies
控制策略 | 启动时间/s | 总能耗/kWh |
---|---|---|
1 | >2000 | 未完成启动,忽略 |
2 | 1009 | 0.67 |
3 | 631 | 0.61 |
4 | 882 | 0.59 |
[1] |
袁艳艳, 司小冬, 吴诗寒, 等. 极地环境液压马达密封技术分析及仿真验证[J]. 船舶工程, 2019(增刊1):100-105.
|
|
|
[2] |
陈英龙, 郝新娟, 宋甫俊, 等. 低温环境下液压元件及系统研究综述[J]. 机床与液压, 2022, 50(13): 174-180.
|
|
|
[3] |
彭立广, 焦悦, 丘铭军. 基于液压油超低温特性的加热及保温系统设计仿真和试验分析[J]. 液压气动与密封, 2020, 40(3): 64-69.
|
|
|
[4] |
盖江涛. 履带车辆双电机耦合驱动技术研究[D]. 长沙: 湖南大学, 2015.
|
|
|
[5] |
徐保荣, 张金豹, 姚李刚, 等. 液力机械综合传动装置低温阻力矩特性研究与验证[J/OL]. 兵工学报, 2022(2022-07-13).https://doi:org/10.12382/bgxb.2022.0182.
doi: https://doi:org/10.12382/bgxb.2022.0182 |
doi: https://doi:org/10.12382/bgxb.2022.0182 |
|
[6] |
doi: 10.1007/s11249-016-0693-8 URL |
[7] |
|
[8] |
|
[9] |
JIANGSQ,
|
[10] |
徐保荣, 吴延威, 卢亚辉, 等. 综合传动装置起动扭矩测试试验研究[J]. 计算机测量与控制, 2015, 23(5):1606-1608,1612.
|
|
|
[11] |
王勇, 张升霞. 挖掘机发动机低温预热方法的研究与应用[J]. 建筑机械, 2017(12):51-53.
|
|
|
[12] |
管仁廷, 毕晓超. 液压系统低温环境技术应用[J]. 机械工程与自动化, 2016(3):204-205,208.
|
|
|
[13] |
高立全, 王佳. 甲板机械极地防寒的电伴热装置[J]. 机电设备, 2019, 36(5):25-27.
|
|
|
[14] |
陈新峰. 低温对液压介质的影响及解决措施[J]. 机械工程师, 2013(4):210.
|
|
|
[15] |
王乐, 万鑫, 邱祥宇, 等. 某电动汽车整车热管理系统控制策略研究[C]//2018中国汽车工程学会年会论文集. 上海: 中国汽车工程学会, 2018: 427-432.
|
|
|
[16] |
苗龙. 特种车辆分布式混合动力热管理系统研究[D]. 北京: 北京理工大学, 2015.
|
|
|
[17] |
王瑞, 王义春, 冯朝卿, 等. 混合动力履带车辆电机加热低温预热系统设计[J]. 兵工学报, 2015, 36(3): 398-404.
doi: 10.3969/j.issn.1000-1093.2015.03.003 |
doi: 10.3969/j.issn.1000-1093.2015.03.003 |
|
[18] |
王斌, 宁斌, 陈辛波, 等. 齿轮传动搅油功率损失的研究进展[J]. 机械工程学报, 2020, 56(23):1-20.
doi: 10.3901/JME.2020.23.001 |
doi: 10.3901/JME.2020.23.001 |
|
[19] |
胡开埂. 基于DSP的永磁同步电机四象限驱动控制系统的研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.
|
|
|
[20] |
袁双玲. 牵引电机转子铁心感应加热技术研究[J]. 微电机, 2022, 55(3): 75-78.
|
|
|
[21] |
符涛, 徐爱祥, 寇广孝, 等. 4种导热油比热容随温度变化规律[J]. 湖南科技大学学报(自然科学版), 2021, 36(2):119-124.
|
|
|
[22] |
doi: 10.1109/TTE.2015.2471180 URL |
[23] |
|
[24] |
尹安东, 赵韩. 基于混合系统理论的混合动力城市客车控制策略研究[J]. 汽车工程, 2010, 32(2):98-102.
|
|
[1] | 袁艺,盖江涛,曾根,周广明,李训明,马长军. 高速履带车辆横摆运动响应特性分析与试验验证[J]. 兵工学报, 2024, 45(4): 1094-1107. |
[2] | 李欢欢, 刘辉, 盖江涛, 李训明. 基于粒子群优化算法PID参数优化的双电机耦合驱动履带车辆转向控制[J]. 兵工学报, 2024, 45(3): 916-924. |
[3] | 王绪, 李睿, 黄英, 沈继伟, 商显赫. 考虑不同路面特征的军用履带车辆循环工况构建[J]. 兵工学报, 2024, 45(3): 907-915. |
[4] | 杨加秀, 李新凯, 张宏立, 王昊. 基于积分强化学习的四旋翼无人机鲁棒跟踪[J]. 兵工学报, 2023, 44(9): 2802-2813. |
[5] | 刘佳, 刘海鸥, 陈慧岩, 毛飞鸿. 基于融合特征的无人履带车辆道路类型识别方法[J]. 兵工学报, 2023, 44(5): 1267-1276. |
[6] | 卢佳兴, 刘海鸥, 关海杰, 李德润, 陈慧岩, 刘龙龙. 基于双参数自适应优化的无人履带车辆轨迹跟踪控制[J]. 兵工学报, 2023, 44(4): 960-971. |
[7] | 曾子豪, 张京东, 龚雪莲, 刘坤明, 桂学文, 廖日东. 拉伸载荷下双销式履带板强度计算方法[J]. 兵工学报, 2023, 44(3): 831-840. |
[8] | 生辉, 项昌乐, 盖江涛, 袁艺, 简洪超, 张楠. 双侧电机耦合驱动履带车辆单侧电机故障模式下车辆安全控制[J]. 兵工学报, 2023, 44(11): 3498-3507. |
[9] | 陶俊峰, 刘海鸥, 关海杰, 陈慧岩, 臧政. 基于可通行度估计的无人履带车辆路径规划[J]. 兵工学报, 2023, 44(11): 3320-3332. |
[10] | 傅晋博, 张栋, 王孟阳, 赵军民. 面向目标定位精度提升的无人机航迹规划[J]. 兵工学报, 2023, 44(11): 3394-3406. |
[11] | 张发平, 张书畅, 武锴, 张云贺, 阎艳. 基于代理模型进化的履带车辆动力学参数优化[J]. 兵工学报, 2023, 44(1): 27-39. |
[12] | 周铖, 罗杨, 魏江, 曹宏瑞, 兰海, 张万昊. 履带车辆制动器扭振信号瞬时频率特征提取方法研究[J]. 兵工学报, 2023, 44(1): 316-324. |
[13] | 袁艺, 盖江涛, 周广明, 高秀才, 李训明, 马长军. 高速电驱动履带车辆操纵特性分析[J]. 兵工学报, 2023, 44(1): 203-213. |
[14] | 曾根, 马长军, 庞大千, 李同辉, 张楠. 机电复合传动高线速转子-行星齿轮系统耦合振动特性[J]. 兵工学报, 2023, 44(1): 156-164. |
[15] | 唐泽月, 刘海鸥, 薛明轩, 陈慧岩, 龚小杰, 陶俊峰. 基于MPC-MFAC的双侧独立电驱动无人履带车辆轨迹跟踪控制[J]. 兵工学报, 2023, 44(1): 129-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||