欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2023, Vol. 44 ›› Issue (5): 1443-1455.doi: 10.12382/bgxb.2022.0032

• • 上一篇    下一篇

空射诱饵弹干扰资源动态分配策略

陈美杉, 刘赢*(), 曾维贵, 钱坤   

  1. 海军航空大学, 山东 烟台 264001
  • 收稿日期:2022-01-10 上线日期:2022-06-29
  • 通讯作者:
    *邮箱: E-mail:

Dynamic Jamming Resource Allocation Strategy of MALD

CHEN Meishan, LIU Ying*(), ZENG Weigui, QIAN Kun   

  1. Naval Aeronautical University, Yantai 264001, Shandong, China
  • Received:2022-01-10 Online:2022-06-29

摘要:

基于空射诱饵弹干扰机理和战术使用原则,针对诱饵弹动态干扰资源分配中存在的问题,提出一种更加贴合战场实际且时效性更强的空射诱饵弹对抗组网雷达干扰资源动态分配方法。采用基于ICRITIC—变权理论的威胁评估方法确定组网雷达的动态威胁矩阵;结合诱饵弹有源假目标干扰模式,从匹配度角度分析了影响干扰效果的相关指标,并构造了干扰效能矩阵;基于最优干扰效能建立了资源优化目标模型,并利用改进粒子群优化算法对资源优化问题进行求解。仿真结果表明,提出的优化方法能更合理地实现干扰资源分配,更加符合诱饵弹作战实际;相比传统方法,其计算效率和最优解正确率具有更明显优势。

关键词: 微型空射诱饵, 动态分配, 变权理论, 威胁评估, 干扰效能评估, 改进粒子群优化算法

Abstract:

In order to address the problems existing in dynamic jamming resource allocation, based on the jamming mechanism and tactical principles of miniature air-launched decoy (MALD), a dynamic allocation method of jamming resources for MALD to counter the netted radar system, which is more relevant to the battlefield and has better timeliness, is proposed. Firstly, a threat assessment method based on the ICRITIC variable weights theory is used to determine the dynamic threat matrix of the netted radars. Then, combined with the MALD’s active decoy jamming mode and based on the matching degree, the relevant indexes affecting the jamming effect are analyzed, and the jamming effectiveness matrix is constructed. Finally, the objective model of resource optimization is established based on the optimal jamming efficiency, and the improved particle swarm optimization algorithm is adopted to solve the resource optimization problem. The simulation results show that the proposed optimization method can achieve jamming resource allocation in a more rational way and better conforms to the actural operational situation of MALD. Compared with the traditional methods, the computational efficiency and the accuracy of the optimal solution have more remarkable advantages.

Key words: miniature air-launched decoy, dynamic allocation, variable weights theory, threat assessment, jamming effectiveness assessment, improved particle swarm optimization algorithm