[1] |
傅洪贤, 沈周, 赵勇, 等. 隧道电子雷管爆破降振技术试验研究[J]. 岩石力学与工程学报, 2012, 31(3):597-603.
|
|
FU H X, SHEN Z, ZHAO Y, et al. Experimental study on vibration reduction technology of tunnel electronic detonator blasting[J]. Journal of Rock Mechanics and Engineering, 2012, 31(3):597-603. (in Chinese)
|
[2] |
刘翔宇, 龚敏, 杨仁树, 等. 基于蒙特卡洛的电子雷管延期误差对隧道爆破振动影响研究[J]. 振动与冲击, 2023, 42(23):192-198.
|
|
LIU X Y, GONG M, YANG R S, et al. Effects of delay error of electronic detonator on tunnel blasting vibration based on Monte Carlo method[J]. Journal of Vibration and Shock, 2023, 42(23):192-198. (in Chinese)
|
[3] |
刘忠民, 杨年华, 石磊, 等. 电子雷管小孔距爆破拒爆试验研究[J]. 爆破器材, 2021, 50(5):39-42,49.
|
|
LIU Z M, YANG N H, SHI L, et al. Experimental study on misfire in small hole-space blasting of electronic detonator[J]. Explosive Materials, 2021, 50(5):39-42,49. (in Chinese)
|
[4] |
冷振东, 范勇, 涂书芳, 等. 电子雷管起爆技术研究进展与发展建议[J]. 中国工程科学, 2023, 25(1):142-154.
doi: 10.15302/J-SSCAE-2023.07.001
|
|
LENG Z D, FAN Y, TU S F, et al. Research progress and development suggestion of electronic detonator initiation technology[J]. Chinese Engineering Science, 2023, 25(1):142-154. (in Chinese)
|
[5] |
REN D M, HOU J H, DUAN J R, et al. Failure mode analysis of electronic detonator under high overload condition[J]. FirePhysChem, 2022, 2(2):199-205.
|
[6] |
杨文, 韩尧, 吴竞, 等. 电子雷管用电子控制模块的抗冲击性能研究[J]. 爆破器材, 2023, 52(2):8-12.
|
|
YANG W, HAN Y, WU J, et al. Study on impact resistance of electronic control module for electronic detonator[J]. Explosive Materials, 2023, 52(2):8-12. (in Chinese)
|
[7] |
杨文, 岳彩新, 宋家良, 等. 工业电子雷管抗冲击性能试验研究[J]. 火工品, 2022, 52(2):16-19.
|
|
YANG W, YUE C X, SONG J L, et al. Experimental research on the impact resistance of industrial electronic detonators[J]. Initiators and Pyrotechnics, 2022, 52(2):16-19. (in Chinese)
|
[8] |
王家乐, 李洪伟, 王小兵, 等. 冲击载荷作用下钽电容的电压瞬变特性及微观机理[J]. 爆炸与冲击, 2024, 44(4):043101.
|
|
WANG J L, LI H W, WANG X B, et al. Voltage transient characteristics and microscopic mechanism of tantalum capacitor under impact load[J]. Explosion and Shock Waves, 2024, 44(4):043101. (in Chinese)
|
[9] |
TEVEROVSKY A. Effect of mechanical stresses on characteristics of chip tantalum capacitors[J]. IEEE Transactions on Device and Materials Reliability, 2007, 7(3):399-406.
|
[10] |
李长龙, 高世桥, 牛少华, 等. 高冲击环境对引信用储能电容性能的影响[J]. 兵工学报, 2016, 37(增刊2):16-22.
|
|
LI C L, GAO S Q, NIU S H, et al. Effect of high-g shock environment on performances of energy-storage capacitors used in fuse[J]. Acta Armamentarii, 2016, 37(S2):16-22. (in Chinese)
|
[11] |
贾丰州, 牛少华, 孙远程, 等. 冲击载荷作用下的固体钽电容力-电响应特性[J]. 探测与控制学报, 2022, 44(5):20-25.
|
|
JIA F Z, NIU S H, SUN Y C, et al. Solid tantalum capacitance force-electrical response characteristics of impact load[J]. Journal of Detection and Control, 2022, 44(5):20-25. (in Chinese)
|
[12] |
DANIEL P, NATHAN M, TRIET D, et al. Test method to evaluate high-g component susceptibility[C]// Proceedings of the 61st Annual Fuze Conference. San Diego,CA,US: National Defense Industrial Associationr, 2018.
|
[13] |
程向群, 李晓峰, 王亚斌, 等. 高瞬态冲击下陶瓷电容器损伤过程的参数漂移特性[J]. 兵工学报, 2020, 41(2):234-240.
|
|
CHENG X Q, LI X F, WANG Y B, et al. Parameter drift characteristics of ceramic capacitors during damage under high transient impact[J]. Acta Armamentarii, 2020, 41(2):234-240. (in Chinese)
|
[14] |
刘波, 杨荷, 赵慧, 等. 单轴静压条件下高压多层陶瓷电容的容值变化[J] 兵工学报, 2023, 44(6):1858-1866.
doi: 10.12382/bgxb.2022.0103
|
|
LIU B, YANG H, ZHAO H, et al. Capacitance variation of high-voltage multilayer ceramic capacitors under uniaxial static pressure[J]. Acta Armamentarii, 2023, 44(6):1858-1866. (in Chinese)
doi: 10.12382/bgxb.2022.0103
|
[15] |
YANG G, YUE Z X, GUI Z L, et al. Dielectric responses of modified BaTiO3 in multilayer ceramic capacitors(MLCCs) to the combined uniaxial stress and DC bias fields[J]. Journal of Applied Physics, 2008, 104(7):074115.
|
[16] |
YANG G, YUE Z X, JI Y, et al. Dielectric nonlinearity of piezoelectric stack actuator under combined uniaxial compressive stress and electric field[J]. Journal of Applied Physics, 2008, 104(7):074116.
|
[17] |
杨刚. 多层铁电压电器件在力电载荷下的介电响应和疲劳研究[D]. 北京: 清华大学, 2008.
|
|
YANG G. Investigation on dielectric response and fatigue of ferroelectric and piezoelectric devices under combined mechanical and electric loads[D]. Beijing: Tsinghua University, 2008. (in Chinese)
|
[18] |
COLE R H. Underwater explosions[M]. NJ, US: Princeton University Press, 1948.
|
[19] |
TEVEROVSKY A. Breakdown and self-healing in tantalum capacitors[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(2):663-671.
|
[20] |
林学清, 洪雪宝. 铝电解电容器工程技术[M]. 厦门: 厦门大学出版社, 2006:33-43.
|
|
LIN X Q, HONG X B. Engineering technology of aluminum electrolytic capacitor[M]. Xiamen: Xiamen University Press, 2006:33-43. (in Chinese)
|
[21] |
李长龙, 高世桥, 牛少华, 等. 高冲击下引信用固态钽电容的参数变化[J]. 爆炸与冲击, 2018, 38(2):419-425.
|
|
LI C L, GAO S Q, NIU S H, et al. Parameters variation of solid tantalum capacitors used in fuze under high-g shock[J]. Explosion and Shock Waves, 2018, 38(2):419-425. (in Chinese)
|