欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2023, Vol. 44 ›› Issue (9): 2732-2744.doi: 10.12382/bgxb.2022.1161

所属专题: 智能系统与装备技术

• • 上一篇    下一篇

基于YOLOv5的无人车自主目标识别优化算法

赵晓冬, 张洵颖*()   

  1. 西北工业大学 电子信息学院, 陕西 西安 710072
  • 收稿日期:2022-11-30 上线日期:2023-04-19
  • 通讯作者:
  • 基金资助:
    航空科学基金项目(201907053005); 航空科学基金人工智能专项项目(2019ZC053018)

Optimization Algorithm of Autonomous Target Recognition for Unmanned Vehicles Based on YOLOv5

ZHAO Xiaodong, ZHANG Xunying*()   

  1. School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
  • Received:2022-11-30 Online:2023-04-19

摘要:

复杂地面战场环境下的自主目标识别是未来无人车实现智能化作战的关键技术。如何将基于深度学习的自主目标识别算法进行资源受限情况下的嵌入式计算平台部署应用,已成为目前无人车智能化赋能亟待解决的核心问题。以用于地面自主目标识别的YOLOv5深度神经网络结构为基础,提出一种基于改进型注意力模块和BatchNorm层的多正则项自适应网络裁剪算法,在裁剪与训练的协同过程中实现网络结构的最优化裁剪;设计一种对权重实施不饱和映射以及对激活值实施饱和映射的组合式训练后INT8量化算法。将压缩优化后的YOLOv5x网络在基于Zynq UltraScale+MPSoC架构的嵌入式计算平台上进行应用部署及验证。验证结果表明:YOLOv5x网络在通道裁剪40%和INT8量化时,红外目标识别精度仅减少0.374%,可见光目标识别精度提升0.065%,目标识别帧频均可达到25帧/s,能够满足无人车复杂战场环境下自主目标识别的准确度及实时性要求;自主目标识别神经网络压缩优化算法可扩展应用于无人机、精确制导武器等其他作战平台。

关键词: 无人车, 目标识别, YOLOv5x, 正则化裁剪, INT8量化算法, 嵌入式平台

Abstract:

Autonomous target recognition is a key technology for enabling intelligent operation of unmanned vehicles in complex ground battlefield environments. However, deploying and applyingdeep learning-based autonomous target recognition algorithmson resource-constrained embedded computing platformsfor realizing intelligent unmanned vehicles remains a challenging task. Based on the YOLOv5 deep neural network structure used for autonomous recognition of ground targets, this paper proposes a multi regularization adaptive network pruning algorithm based on animproved attention module and BatchNorm layer. The proposed algorithm achieves optimal pruning of the network structure during the collaborative process of pruning and training. A combined posttraining INT8 quantization algorithm is designed, employing unsaturated mapping for weights and saturated mapping for activation values. The compressed and optimized YOLOv5x network is then deployed and verified on the embedded computing platform based on the Zynq UltraScale+ MPSoC architecture.The verification results show that when YOLOv5x network prunes 40% of the channel and quantizes with INT8 strategy, the recognition accuracy for infrared dataset is only reduced by 0.374%. The recognition accuracy for visible light dataset is increased by 0.065%, and the target recognition frame rate can reach 25 frames per second. The optimized network can meet the accuracy and real-time requirements of autonomous target recognition in the complex battlefield environment of unmanned vehicles. The proposed network optimization algorithm can be extended to other combat platforms, such as unmanned aerial vehiclesand precision-guided weapons.

Key words: unmanned vehicles, target recognition, YOLOv5x, regularized pruning, INT8 quantization algorithm, embedded platform

中图分类号: