[1] |
JIA C H, HUANG M H, SUI L Y. An autonomous vehicle motion planning method based on dynamic programming[C]//Proceedings of the 2023 17th International Computer Conference on Wavelet Active Media Technology and Information Processing. Chengdu, China:IEEE, 2020: 394-398.
|
[2] |
JIA H B, ZHANG L, WANG Z P. A dynamic lane-changing trajectory planning scheme for autonomous vehicles on structured road[C]// Proceedings of the 2020 IEEE 9th International Power Electronics and Motion Control Conference. Nanjing, China:IEEE, 2020: 2222-2227.
|
[3] |
BETZ J, ZHENG H R, LINIGER A, et al. Autonomous vehicles on the edge: A survey on autonomous vehicle racing[J]. IEEE Open Journal of Intelligent Transportation Systems, 2022, 3: 458-488.
doi: 10.1109/OJITS.2022.3181510
URL
|
[4] |
LIU B X, LIU C. Path planning of mobile robots based on improved RRT algorithm[J]. Journal of Physics: Conference Series, 2022, 2216: 012020.
doi: 10.1088/1742-6596/2216/1/012020
|
[5] |
SONG P C, PAN J S, CHU S C. A parallel compact cuckoo search algorithm for three-dimensional path planning[J]. Applied Soft Computing, 2020, 94: 106443.
doi: 10.1016/j.asoc.2020.106443
URL
|
[6] |
SUN Y H, FANG M, SU Y X. AGV path planning based on improved Dijkstra algorithm[J]. Journal of Physics: Conference Series, 2021, 1746: 012052.
doi: 10.1088/1742-6596/1746/1/012052
|
[7] |
LI B C, DONG C Y, CHEN Q M, et al. Path planning of mobile robots based on an improved A* algorithm[C]// Proceedings of the 2020 4th High Performance Computing and Cluster Technologies Conference & 2020 3rd International Conference on Big Data and Artificial Intelligence. Qingdao, China: ACM, 2020: 49-53.
|
[8] |
SUN J X, XIN L. Research on path planning of AGV based on improved ant colony optimization algorithm[C]// Proceedings of the 2021 33rd Chinese Control and Decision Conference. Kunming, China: IEEE, 2021: 7567-7572.
|
[9] |
GUO P, JIANG B. Research on path planning of three-dimensional UAV based on levy flight strategy and improved particle swarm optimization algorithm[C]// Proceedings of the 2020 7th International Conference on Information Science and Control Engineering. Changsha, China: IEEE, 2020: 1199-1203.
|
[10] |
ANDRIY D, SERGII R, DARYA V. Simulation tool for the drone trajectory planning based on genetic algorithm approach[C]// Proceedings of the 2020 IEEE KhPI Week on Advanced Technology. Kharkiv, Ukraine: IEEE, 2020: 387-390.
|
[11] |
BAO B L. Research on real-time path planning and obstacle avoiding for mobile robot swarms based on an advanced artificial potential field method[C]// Proceedings of the 2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms. Changchun, China: IEEE, 2023: 1747-1752.
|
[12] |
YUAN X Y. Research on the limitations of UAV path planning based on artificial potential field method[C]// Proceedings of the 2022 9th International Forum on Electrical Engineering and Automation. Zhuhai, China: IEEE, 2022: 619-622.
|
[13] |
TAN X, CORTEZ W S, DIMAROGONAS D V. High-order barrier functions:Robustness, safety, and performance-critical control[J]. IEEE Transactions on Automatic Control, 2021, 67(6): 3021-3028.
doi: 10.1109/TAC.2021.3089639
URL
|
[14] |
AMES A D, COOGAN S, EGERSTEDT M, et al. Control barrier functions: theory and applications[C]// Proceedings of the 2019 18th EuropeanControl Conference. Naples, Italy: IEEE, 2019: 3420-3431.
|
[15] |
TAYLOR A J, AMES A D. Adaptive safety with control barrier functions[C]// Proceedings of the 2020 American Control Conference. Denver, CO, US: IEEE, 2020: 1399-1405.
|
[16] |
KOSURU V S R, VENKITARAMAN A K. Developing a deep Q-learning and neural network framework for trajectory planning[J]. European Journal of Engineering and Technology Research, 2022, 7(6): 148-157.
doi: 10.24018/ejeng.2022.7.6.2944
URL
|
[17] |
YANG Y X, CHEN Z X. Optimization of dynamic obstacle avoidance path of multirotor UAV based on ant colony algorithm[J]. Wireless Communications and Mobile Computing, 2022(3):1-9.
|
[18] |
SWDDAOUI A, SAAJ C M. Collision-free optimal trajectory generation for a space robot using genetic algorithm[J]. Acta Astronautica, 2021, 179: 311-321.
doi: 10.1016/j.actaastro.2020.11.001
URL
|
[19] |
WANG D, LI C H, GUO N, et al. Local path planning of mobile robot based on artificial potential field[C]// Proceedings of the 2020 39th Chinese Control Conference. Shenyang, China: IEEE, 2020: 3677-3682.
|
[20] |
杜宏宝, 王正杰, 唐礼喜, 等. 基于控制障碍函数的飞行器避障与制导控制[J]. 兵工学报, 2023, 44(9): 2814-2823.
doi: 10.12382/bgxb.2022.1002
|
|
DU H B, WANG Z J, TANG L X, et al. Control barrier function-based control for aircraft avoidance and guidance with a dynamic obstacle[J]. Acta Armamentarii, 2023, 44(9): 2814-2823. (in Chinese)
|
[21] |
SRINIVASAN M, DABHOLKAR A, COOGAN S, et al. Synthesis of control barrier functions using a supervised machine learning approach[C]// Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas, ND, US: IEEE, 2020: 7139-7145.
|
[22] |
TAYLOR A, SINGLETARY A, YUE Y, et al. Learning for safety-critical control with control barrier functions[C]// Proceedings of the 2nd Learning for Dynamics and Control. Cambridge, MA, US: PMLR, 2020: 708-717.
|
[23] |
龙离军, 胡腾飞. CLF-CBF-QP新形式下非线性系统的安全攸关控制与优化[J]. 控制理论与应用, 2022, 39(8):1387-1396.
|
|
LONG L J, HU T F. Safety-critical control and optimization of nonlinear systems based on new forms of CLF-CBF-QP[J]. Control Theory & Applications, 2022, 39(8): 1387-1396. (in Chinese)
|