欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2023, Vol. 44 ›› Issue (1): 84-97.doi: 10.12382/bgxb.2022.0650

所属专题: 特种车辆理论与技术

• • 上一篇    下一篇

参数自优化的有人与无人车辆编队鲁棒模型预测控制

宋佳睿1, 陶刚1, 李德润2, 臧政1, 吴绍斌1,*(), 龚建伟1   

  1. 1 北京理工大学 机械与车辆学院, 北京 100081
    2 中汽研汽车检验中心(天津)有限公司, 天津 300300
  • 收稿日期:2022-07-16 上线日期:2022-12-13
  • 通讯作者:
  • 基金资助:
    国家自然科学基金区域创新发展联合基金项目(U19A2083)

Robust Model Predictive Control for Manned and Unmanned Vehicle Formation Based on Parameter Self-Optimization

SONG Jiarui1, TAO Gang1, LI Derun2, ZANG Zheng1, WU Shaobin1,*(), GONG Jianwei1   

  1. 1 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
    2 CATARC Automotive Test Center (Tianjin) Co., Ltd., Tianjin 300300, China
  • Received:2022-07-16 Online:2022-12-13

摘要:

为解决有人与无人车辆编队中,有人领航车紧急加减速和紧急转向控制输入对无人车跟踪控制的扰动问题,设计了一种参数自优化的有人与无人车辆编队鲁棒模型预测控制算法。通过采集分析历史数据确定控制器扰动的噪声极值,并经过适度放缩得到其鲁棒边界。设计抑制该扰动的局部反馈鲁棒控制器,并通过贝叶斯优化的方法实现鲁棒边界等控制器参数自优化。基于混合整数线性优化的方法预测有人领航车未来轨迹,并设计鲁棒模型预测控制器实现无人车对有人领航车的跟踪控制。仿真和实车试验结果表明:所设计的鲁棒模型预测控制器在跟踪精度方面相比于传统模型预测控制器有明显的提升;同时该控制器有效地抵抗了来自有人领航车紧急加减速和紧急转向控制输入、无人跟随车系统模型不确定性和外部环境的扰动,振荡情况明显改善,提高了系统的鲁棒性。

关键词: 有人与无人车辆编队, 领航跟踪控制, 鲁棒模型预测控制, 贝叶斯优化

Abstract:

To solve the problem of disturbances in unmanned vehicle tracking control caused by the emergency acceleration, deceleration and steering control input of the manned leading vehicle in a formation of manned and unmanned vehicles, a parameter self-optimizing robust model predictive controller is designed. The noise extremum of the disturbances is determined by collecting and analyzing the historical data, which is scaled moderately to obtain a robust boundary. A local feedback robust controller is designed to restrain the disturbances, and the controller’s parameters are automatically optimized using the Bayesian optimization algorithm. The mixed-integer linear optimization method is used to predict the trajectory of the leading vehicle, and a robust model predictive controller is proposed to track the leading vehicle using an unmanned vehicle. The simulation and experimental results show that the robust model predictive controller designed in this paper has a significant improvement in tracking accuracy compared with traditional controllers. The controller also effectively restrains the disturbances caused by emergency acceleration, deceleration and steering control input of the manned leading vehicle, model uncertainty of unmanned tracking vehicle and other external factors. Vibration is obviously suppressed, and the robustness of the system is enhanced.

Key words: manned and unmanned vehicle formation, piloting and tracking control, robust model predictive control, Bayesian optimization

中图分类号: