欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2023, Vol. 44 ›› Issue (9): 2745-2755.doi: 10.12382/bgxb.2022.1133

所属专题: 智能系统与装备技术

• • 上一篇    下一篇

基于多模型网络的激光末制导炮弹诸元解算方法

刘畅1,2, 雷红波1,2, 林时尧3, 范世鹏1,2,*(), 王江1,2   

  1. 1 北京理工大学 宇航学院, 北京 100081
    2 北京理工大学 中国-阿联酋智能无人系统“一带一路”联合实验室, 北京 100081
    3 中国兵器科学研究院, 北京 100089
  • 收稿日期:2022-10-31 上线日期:2023-04-03
  • 通讯作者:
  • 基金资助:
    国家自然科学基金面上项目(52272358)

Firing Data Calculation Method for Laser Terminal Guidance Projectile Based on Multi-model Network

LIU Chang1,2, LEI Hongbo1,2, LIN Shiyao3, FAN Shipeng1,2,*(), WANG Jiang1,2   

  1. 1 School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
    2 China-UAE Belt and Road Joint Laboratory on Intelligent Unmanned Systems, Beijing Institute of Technology, Beijing 100081, China
    3 China Research and Development Academy of Machinery Equipment, Beijing 100089, China
  • Received:2022-10-31 Online:2023-04-03

摘要:

针对射表解算激光末制导炮弹射击诸元存在较大的截断误差及无法快速精确解算的缺陷,提出一种基于多模型网络的射击诸元快速精确求解方法。建立制导炮弹6自由度弹道模型,分析初始条件中表尺、程装等对射程的影响。考虑气温、气压和风干扰等因素对求解结果的影响,应用最小二乘法对气温、气压进行拟合,采取层权的方式求取精确弹道风,作为网络模型的部分输入。利用数学仿真手段批量化生成样本,对深度神经网络中的每个模型进行离线训练。对新方法进行数学仿真和飞行试验验证。仿真和试验结果表明,相对于传统的射表,新方法求解精度高,误差率小于0.2%。

关键词: 激光末制导炮弹, 诸元解算, 多模型网络, 气象条件, 深度神经网络

Abstract:

To deal with the large truncation errors and defects of being unable to give quick and accurate solutions in calculating the firing data of laser terminal guidance projectiles by the firing table, a method based on multi-model network is proposed. Firstly, a six-degree-of-freedom trajectory model of the guided projectile is established, and the influence of the rear sight on the range in the initial conditions is analyzed. Secondly, considering the influence of air temperature, air pressure, wind interference and other factors on the solution, the least square method is used to fit the air temperature and pressure, and the layer weight method is adopted to obtain the accurate ballistic wind as part of the input of the network model. Thirdly, samples are generated in batches through simulations, which are applied to train each model in the deep neural network. Finally, the proposed method is verified by simulations and flight tests. The simulation results show that the proposed method has a higher precision and an error rate of less than 0.2% compared with the traditional firing table.

Key words: laser terminal guidance projectile, firing data solution, multi-model network, meteorological condition, deep neural networks

中图分类号: