[1] |
RIZK Y, AWAD M, TUNSTEL E. Cooperative heterogeneous multi-robot systems: a survey[J]. ACM Computing Surveys, 2019, 52(2): 1-31.
|
[2] |
陈慧岩, 张玉. 军用地面无人机动平台技术发展综述[J]. 兵工学报, 2014, 35(10): 1696-1706.
doi: 10.3969/j.issn.1000-1093.2014.10.026
|
|
CHEN H Y, ZHANG Y. An overview of research on military unmanned ground vehicles[J]. Acta Armamentarii, 2014, 35(10): 1696-1706. (in Chinese)
|
[3] |
AHMED N, CORTES J, MARTINEZ S. Distributed control and estimation of robotic vehicle networks: overview of the special issue[J]. IEEE Control Systems, 2016, 36(2): 36-40.
doi: 10.1109/MCS.2015.2512030
URL
|
[4] |
ZHAI Z, MARTÍNEZ ORTEGA J, LUCAS MARTÍNEZ N, et al. A mission planning approach for precision farming systems based on multi-objective optimization[J]. Sensors, 2018, 18(6):1795.
doi: 10.3390/s18061795
URL
|
[5] |
QIAN D W, XI Y F. Leader-follower formation maneuvers for multi-robot systems via derivative and integral terminal sliding mode[J]. Applied sciences, 2018, 8(7):1045.
|
[6] |
SCHULZE M, NÖCKER G, BOHM K. PReVENT: a european program to improve active safety[C]// Proceedings of the 5th International Conference on Intelligent Transportation Systems Telecommunications. Brest, France:[s.n.], 2015.
|
[7] |
XU C, QIN H M, WANG J Q. Simply analysis of connected vehicle’s role in a partially-connected vehicle group[C]//Proceedings of 2014 International Symposium on Instrumentation and Measurement, Sensor Network and Automation. Ottawa, Canada: IEEE, 2014, 4: 1253-1256.
|
[8] |
MIGLANI A, KUMAR N. Deep learning models for traffic flow prediction in autonomous vehicles: a review, solutions, and challenges[J]. Vehicular Communications, 2019, 20: 100184.
doi: 10.1016/j.vehcom.2019.100184
URL
|
[9] |
TIAN Y, ZHANG K L, LI J Y, et al. LSTM-based traffic flow prediction with missing data[J]. Neurocomputing, 2018, 318: 297-305.
doi: 10.1016/j.neucom.2018.08.067
URL
|
[10] |
OTTE M, KUHLMAN M J, SOFGE D. Auctions for multi-robot task allocation in communication limited environments[J]. Autonomous Robots, 2020, 44(3): 547-584.
doi: 10.1007/s10514-019-09828-5
URL
|
[11] |
WANG D, ZHANG W, SONG B, et al. Market-based model in CR-IoT: a Q-probabilistic multi-agent reinforcement learning approach[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 6(1): 179-188.
doi: 10.1109/TCCN.2019.2950242
URL
|
[12] |
QU G N, BROWN D, LI N. Distributed greedy algorithm for multi-agent task assignment problem with submodular utility functions[J]. Automatica, 2019, 105: 206-215.
doi: 10.1016/j.automatica.2019.03.007
URL
|
[13] |
FUJII S, FUJITA A, UMEDU T, et al. Cooperative vehicle positioning via V2V communications and onboard sensors[C]// Proceedings of 2011 IEEE Vehicular Technology Conference. San Francisco, CA, US:IEEE, 2011: 1-5.
|
[14] |
HOSSAIN M, ELSHAFIEY I, AL-SANIE A. Cooperative vehicle positioning with multi-sensor data fusion and vehicular communications[J]. Wireless Networks, 2019, 25(3): 1403-1413.
doi: 10.1007/s11276-018-1772-6
URL
|
[15] |
KUBE C R, ZHANG H. The use of perceptual cues in multi-robot box-pushing[C]// Proceedings of IEEE international conference on robotics and automation. Minneaplis, MN, US:IEEE, 1996, 3: 2085-2090.
|
[16] |
TOMIZUKA M. Advanced vehicle control systems (AVCS) research for automated highway systems in California PATH[C]//Proceedings of VNIS’94-1994 Vehicle Navigation and Information Systems Conference. Yokohama, Japan:IEEE, 1994: PLEN41-PLEN45.
|
[17] |
GERDTS M, HENRION R, HÖMBERG D, et al. Path planning and collision avoidance for robots[J]. Numerical Algebra, Control & Optimization, 2012, 2(3): 437-463.
|
[18] |
GABRIELA S, IRINA-CARMEN A. Automated conflict resolution in air traffic management[J]. INCAS Bulletin, 2017, 9(1):91-104.
|
[19] |
ZHU H, ALONSO-MORA J. Chance-constrained collision avoidance for mavs in dynamic environments[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 776-783.
doi: 10.1109/LRA.2019.2893494
|
[20] |
NGUYEN L A, HARMAN T L, FAIRCHILD C. Swarmathon: a swarm robotics experiment for future space exploration[C]// Proceedings of 2019 IEEE International Symposium on Measurement and Control in Robotics. Houston, TX, US:IEEE, 2019: B1-3-1-B1-3-4.
|
[21] |
FIORINI P, SHILLER Z. Motion planning in dynamic environments using velocity obstacles[J]. The international journal of robotics research, 1998, 17(7): 760-772.
doi: 10.1177/027836499801700706
URL
|
[22] |
JENIE Y I, KAMPEN E J, DE VISSER C C, et al. Selective velocity obstacle method for deconflicting maneuvers applied to unmanned aerial vehicles[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(6): 1140-1146.
doi: 10.2514/1.G000737
URL
|
[23] |
BORENSTEIN J, KOREN Y. Real-time obstacle avoidance for fast mobile robots[J]. IEEE Transactions on systems, Man, and Cybernetics, 1989, 19(5): 1179-1187.
doi: 10.1109/21.44033
URL
|
[24] |
COSÍO F A, CASTANEDA M A P. Autonomous robot navigation using adaptive potential fields[J]. Mathematical and computer modelling, 2004, 40(9/10): 1141-1156.
doi: 10.1016/j.mcm.2004.05.001
URL
|
[25] |
陈山枝, 胡金玲, 时岩, 等. LTE-V2X车联网技术、标准与应用[J]. 电信科学, 2018, 34(4):1-11.
doi: 10.11959/j.issn.1000-0801.2018140
|
|
CHEN S Z, HU J L, SHI Y, et al. Technologies,standards and applications of LTE-V2X for vehicular networks[J]. Telecommunications Science, 2018, 34(4): 1-11. (in Chinese)
doi: 10.11959/j.issn.1000-0801.2018140
|
[26] |
缪立新, 王发平. V2X车联网关键技术研究及应用综述[J]. 汽车工程学报, 2020, 10(1):1-12.
|
|
MIU L X, WANG F P. Review on research and applications of v2x key technologies[J]. Chinese Journal of Automotive Engineering, 2020, 10(1):1-12. (in Chinese)
|
[27] |
HHHA B, MHR C, HAE A, et al. Multi V2X channels resource allocation algorithms for D2D 5G network performance enhancement[J]. Vehicular Communications, 2021, 31: 100371.
doi: 10.1016/j.vehcom.2021.100371
URL
|
[28] |
XIONG F, LI A J, WANG H, et al. An SDN-MQTT based communication system for battlefield UAV swarms[J]. IEEE Communications Magazine, 2019, 57(8): 41-47.
doi: 10.1109/MCOM.2019.1900291
|
[29] |
王祝. 多无人机协同规划控制的关键技术研究[D]. 北京: 北京理工大学, 2017.
|
|
WANG Z. Research on Key Technologies of Multi-UAV Cooperative Planning and Control[D]. Beijing: Beijing Institute of Technology, 2017. (in Chinese)
|
[30] |
AFSARI K, GUPTA S, AFKHAMIAGHDA M, et al. Applications of collaborative industrial robots in building construction[C]//54th ASC Annual International Conference Proceedings. Minneapolis, MN, US: Associated School of Construction, 2018: 472-479.
|
[31] |
YANG Z, HUANG H, WANG G, et al. Cooperative driving model for non-signalized intersections with cooperative games[J]. Journal of Central South University, 2018, 25(9): 2164-2181.
doi: 10.1007/s11771-018-3905-6
URL
|
[32] |
ZHAO X, WANG J, CHEN Y, et al. Multi-objective cooperative scheduling of CAVs at non-signalized intersection[C]// Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems. Maui, HI, US:IEEE, 2018: 3314-3319.
|
[33] |
申剑峰. 车车协同下无人车换道的过程决策和轨迹规划[D]. 合肥: 合肥工业大学, 2018.
|
|
SHEN J F. Decision making and trajectory planning in lane-changing process of automated vehicle with vehicle-to-vehicle collaboration[D]. Hefei: Hefei University of Technology, 2018. (in Chinese)
|
[34] |
张立雄, 郭艳, 李宁, 等. 基于多智能体强化学习的无人车分布式路径规划方法[J]. 电声技术, 2021, 45(3): 52-57.
|
|
ZHANG L X, GUO Y, LI N, et al. Path planning method of autonomous vehicles based on multi-agent reinforcement learning[J]. Audio Engineering, 2021, 45(3): 52-57. (in Chinese)
|
[35] |
常彦文. 多智能车协同编队与运动规划方法的研究[D]. 北京: 北京石油化工学院, 2022.
|
|
CHANG Y. Research on collaborative formation and motion planning method of multi-intelligent vehicles[D]. Beijing: Beijing Institute of Petrochemical Technology, 2022. (in Chinese)
|
[36] |
宋文静, 李为民, 肖金科, 等. 基于MAS的区域反导发射车协同拦截规划研究[J]. 现代防御技术, 2015, 43(6): 81-86, 123.
|
|
SONG W J, LI W M, XIAO J K, et al. Cooperative interception planning of launcher vehilces based on mas in theater antimissile system[J]. Modern Defence Technology, 2015, 43(6): 81-86, 123. (in Chinese)
|
[37] |
KONOLIDGE K, NILSSON N J. Multi-agent planning systems[C]// Proceedings of First National Conference on Artifical Intelligence. Menlo Park, CA, US:AAAI, 1980: 138-142.
|
[38] |
毛昱天, 陈杰, 方浩, 等. 连通性保持下的多机器人系统分布式群集控制[J]. 控制理论与应用, 2014, 31(10): 1393-1403.
|
|
MAO Y T, CHENG J, FANG H, et al. Decentralized flocking of multi-robot systems with connectivity maintaince. Contol Theory & Applications, 2014, 31(10): 1393-1403. (in Chinese)
|
[39] |
郄天琪, 王伟达, 杨超, 等. 基于模型预测控制方法的智能车路径规划策略研究[C]// 2021中国汽车工程学会年会论文集(1).北京:机械工业出版社, 2021:119-123.
|
|
QIE T Q, WANG W D, YANG C, et al. A path planning method for intelligent vehicles based on model predictive control method[C]// Proceedings of China-SAE Congress(1). Beijing:China Machine Press, 2021: 119-123. (in Chinese)
|
[40] |
李威. 模型预测控制在轨迹规划和车辆控制中的应用研究[D]. 杭州: 浙江大学, 2021.
|
|
LI W. Application of model predictive cotrol in trajectory planning and vehicle control[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
|
[41] |
杨博, 张缓缓, 江忠顺. 基于模型预测控制的车辆避障路径跟踪控制仿真研究[J]. 智能计算机与应用, 2020, 10(12): 99-103.
|
|
YANG B, ZHANG H H, JIANG Z S. Simulation of vehicle obstacle avoidance path tracking control based on model predictive control[J]. Intelligent Computer and Applications, 2020, 10(12): 99-103. (in Chinese)
|
[42] |
冀杰, 唐志荣, 吴明阳, 等. 面向车道变换的路径规划及模型预测轨迹跟踪[J]. 中国公路学报, 2018, 31(4): 172-179.
|
|
JI J, TANG Z R, WU M Y, et al. Path planning and tracking for lane changing based on model predictive cotnrol[J]. China Journal of Highway and Transport, 2018, 31(4): 172-179. (in Chinese)
|
[43] |
詹璟原. 多智能体系统预测协同控制研究[D]. 上海: 复旦大学, 2013.
|
|
ZHAN J Y. Cooperative predictive control of multi-agent systems[D]. Shanghai: Fudan University, 2013. (in Chinese)
|
[44] |
李立, 徐志刚, 赵祥模, 等. 智能网联汽车运动规划方法研究综述[J]. 中国公路学报, 2019, 32(6): 20-33.
doi: 10.19721/j.cnki.1001-7372.2019.06.002
|
|
LI L, XU Z G, ZHAO X M, et al. Review of motion planning methods of intelligent connected vehicles[J]. China Journal of Highway and Transport, 2019, 32(6): 20-33. (in Chinese)
doi: 10.19721/j.cnki.1001-7372.2019.06.002
|
[45] |
采国顺, 刘昊吉, 冯吉伟, 等. 智能汽车的运动规划与控制研究综述[J]. 汽车安全与节能学报, 2021, 12(3): 279-297.
|
|
CAI G S, LIU H J, FENG J W, et al. Review on the research of motion planning and control for intelligent vehicles[J]. Journal of Automotive Safety and Energy, 2021, 12(3): 279-297. (in Chinese)
|
[46] |
刘阳. 基于博弈论的车辆队列运动协同分层控制算法研究[D]. 长春: 吉林大学, 2020.
|
|
LIU Y. Research on hierarchical control algorithm of motion cooperation for vehicle platonn based on game theory[D]. Changchun: Jilin University, 2020. (in Chinese)
|
[47] |
李庆华, 王佳慧, 李海明, 等. 一种双阶段多智能体路径规划算法[J]. 科学技术与工程, 2021, 21(22): 9425-9431.
|
|
LI Q H, WANG J H, LI H M, et al. A two-stage multi-agent path planning algorithm[J]. Science Technology and Engineering, 2021, 21(22): 9425-9431. (in Chinese)
|
[48] |
雷小宇, 杨胜跃, 张亚鸣, 等. 基于协同进化的多智能体机器人路径规划[J]. 计算机系统应用, 2010, 19(11): 157-161.
|
|
LEI X Y, YANG S Y, ZHANG Y M, et al. Path planning research for multi-agent robot based on co-evolution[J]. Computer Systems & Applications, 2010, 19(11): 157-161. (in Chinese)
|
[49] |
王超, 赵晓哲, 康晓予. 面向编队协同防空决策的多智能体规划方法[J]. 舰船电子工程, 2009, 29(1): 62-64.
|
|
WANG C, ZHAO X Z, KANG X Y. A Multi-agent planning method oriented formation cooperative anti-air decision[J]. Ship Electronic Engineering, 2009, 29(1): 62-64. (in Chinese)
|
[50] |
张思宇. 多无人机协同航迹规划及其控制方法研究[D]. 北京: 北京理工大学, 2016.
|
|
ZHANG S Y. Research on Multi-UAVs Cooperative Trajectory Planning and Control Method[D]. Beijing: Beijing Institute of Technolog, 2016. (in Chinese)
|
[51] |
付梦印, 杨毅, 岳裕丰, 等. 地空协同无人系统综述[J]. 国防科技, 2021, 42(3): 1-8.
|
|
FU M Y, YANG Y, YUE Y F, et al. A review of ground-air cooperative unmanned system[J]. National Defense Technology, 2021, 42(3): 1-8. (in Chinese)
|
[52] |
孟红, 朱森. 地面无人系统的发展及未来趋势[J]. 兵工学报, 2014, 35(增刊1): 1-7.
|
|
MENG H, ZHU S. The development and future trends of unmanned ground systems[J]. Acta Armamentarii, 2014, 35(S1): 1-7. (in Chinese)
|
[53] |
王荣浩, 邢建春, 王平, 等. 地面无人系统的多智能体协同控制研究综述[J]. 动力学与控制学报, 2016, 14(2): 97-108.
|
|
WANG R H, XING J C, WANG P, et al. An overview on multi-agents cooperative control of umanned ground systems[J]. Journal of Dynamics and Control, 2016, 14(2): 97-108. (in Chinese)
doi: 10.1016/0165-1889(90)90008-5
URL
|
[54] |
LI B, ZHANG Y M, SHAO Z J, et al. Simultaneous versus joint computing: A case study of multi-vehicle parking motion planning[J]. Journal of Computational Science, 2017, 20: 30-40.
doi: 10.1016/j.jocs.2017.03.015
URL
|
[55] |
袁利平, 夏洁, 陈宗基. 多无人机协同路径规划研究综述[J]. 飞行力学, 2009, 27(5): 1-5, 10.
|
|
YUAN L P, XIA J, CHEN Z J. Survey of cooperative path planning for multiple uavs[J]. Flight Dynamics, 2009, 27(5): 1-5, 10. (in Chinese)
|
[56] |
赵津, 张博, 潘霞, 等. 车联网通信技术及应用前景研究[J]. 时代汽车, 2021(6): 15-16, 32.
|
|
ZHAO J, ZHANG B, PAN X, et al. Research on communications and application of vehicular networks[J]. Auto Time, 2021(6): 15-16, 32. (in Chinese)
|
[57] |
吴志安, 赖永朋, 朱有亮, 等. 基于协同合作的多智能体控制系统算法探究[J]. 机电工程技术, 2022, 51(8): 82-86.
|
|
WU Z A, LAI Y M, ZHU Y L, et al. Research on multi-agent control system algorithm based on cooperative cooperation[J]. Mechanical & Electrical Engineering Technology, 2022, 51(8): 82-86. (in Chinese)
|
[58] |
SHARON G, STERN R, FELNER A, et al. Conflict-based search for optimal multi-agent pathfinding[J]. Artificial Intelligence, 2015, 219: 40-66.
doi: 10.1016/j.artint.2014.11.006
URL
|
[59] |
MIRHELI A, HAJIBABAI L, HAJBABAIE A. Development of a signal-head-free intersection control logic in a fully connected and autonomous vehicle environment[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 412-425.
doi: 10.1016/j.trc.2018.04.026
URL
|
[60] |
杨晨, 张少卿, 孟光磊. 多无人机协同任务规划研究[J]. 指挥与控制学报, 2018, 4(3): 234-248.
|
|
YANG C, ZHANG S Q, MENG G L. Multi-UAV cooperative mission planning[J]. Journal of Command and Control, 2018, 4(3): 234-248. (in Chinese)
|
[61] |
ZHANG X, GUAN X, HWANG I. et al. A hybrid distributed-centralized conflict resolution approach for multi-aircraft based on cooperative co-evolutionary[J]. Science China Information Sciences, 2013, 56: 1-16.
|
[62] |
RASHEED A A A, ABDULLAH M N, Al-ARAJI A S. A review of multi-agent mobile robot systems applications[J]. International Journal of Electrical & Computer Engineering, 2022, 12(4): 3517-3529.
|
[63] |
STANDLEY, TREVOR. Finding optimal solutions to cooperative pathfinding problems[C]// Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. Atlanta, GE, US:AAAI, 2010, 24(1):173-178.
|
[64] |
刘庆周, 吴锋. 多智能体路径规划研究进展[J]. 计算机工程, 2020, 46(4):1-10.
|
|
LIU Q Z, WU F. Research Progress of Multi-Agent Path Planning[J]. Computer Engineering, 2020, 46(4): 1-10. (in Chinese)
|
[65] |
郭超, 陈香玲, 郭鹏, 等. 基于时空A*算法的多AGV无冲突路径规划[J]. 计算机系统应用, 2022, 31(4): 360-368.
|
|
GUO C, CHEN X L, GUO P, et al. Multi-AGV non-conflict path planning based on space-time A* algorithm[J]. Computer Systems & Applications, 2022, 31(4): 360-368. (in Chinese)
|
[66] |
刘丹, 侯山鹏, 曾垂国. 动态环境下多智能体的路径规划[J]. 电脑知识与技术, 2010, 6(12): 3022-3024.
|
|
LIU D, HOU S P, ZENG C G. Multi-agent path planning in the dynamic environment[J]. Computer Knowledge and Technology, 2010, 6(12): 3022-3024. (in Chinese)
|
[67] |
刘志飞, 曹雷, 赖俊, 等. 多智能体路径规划综述[J]. 计算机工程与应用, 2022, 58(20): 43-62.
doi: 10.3778/j.issn.1002-8331.2203-0467
|
|
LIU Z F, CAO L, LAI J, et al. Overview of Multi-Agent Path Finding. Computer Engineering and Applications, 2022, 58(20): 43-62. (in Chinese)
doi: 10.3778/j.issn.1002-8331.2203-0467
|
[68] |
SHARON G, STERN R, FELNER A, et al. Meta-agent conflict-based search for optimal multi-agent path finding[C]//Proceedings of International symposium on combinatorial search. Niagara Falls, Ontario, Canada: AAAI, 2012, 3(1):97-104.
|
[69] |
BOYARSKI E, FELNER A, STERN R, et al. ICBS: Improved conflict-based search algorithm for multi-agent pathfinding[C]// Proceedings of th Twenty-Fourth International Joint Conference on Artificial Intelligence. Buenos, Aires, Argentina:AAAI, 2015: 740-746.
|
[70] |
BARER M, SHARON G, STERN R, et al. Suboptimal variants of the conflict-based search algorithm for the multi-agent pathfinding problem[C]//Proceedings of the Twenty-first Europeah Conference on Artificial Intelligence. Prague, Czech Republic: IOS Press, 2014:961-962.
|
[71] |
乔乔, 王艳, 纪志成. 基于冲突搜索算法的多机器人路径规划[J]. 系统仿真学报, 2022, 34(12): 2659-2669.
doi: 10.16182/j.issn1004731x.joss.22-FZ0926
|
|
QIAO Q, WANG Y, JI C W. Multi-robot path planning based on cbs algorithm[J]. Journal of System Simulation, 2022, 34(12): 2659-2669. (in Chinese)
doi: 10.16182/j.issn1004731x.joss.22-FZ0926
|
[72] |
王东, 于连波, 曹品钊, 等. 基于冲突分类与消解的多智能体路径规划算法设计[J]. 导航定位与授时, 2022, 9(5): 56-66.
|
|
WANG D, YU L B, CAO P Z, et al. Design of a multi-agent path planning algorithm based on conflict classification and resolution[J]. Navigation Positioning and Timing, 2022, 9(5): 56-66. (in Chinese)
|
[73] |
于连波, 曹品钊, 石亮, 等. 基于改进冲突搜索的多智能体路径规划算法[J/OL]. 航空学报, 2022(2022-09-22). https://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2022.27648.
|
|
YU L B, CAO P Z, SHI L, et al. An improved conflict-based search algorithm for multi-agent path planning[J/OL]. Acta Aeronautica et Astranautica Sinica, 2022(2022-09-22): https://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2022.27648. (in Chinese)
|
[74] |
张峰, 李明强, 唐思琦, 等. 多智能体协同决策方法研究[J]. 中国电子科学研究院学报, 2022, 17(9): 905-910.
|
|
ZHANG F, LI M Q, TANG S Q, et al. Research on multi-agent cooperative decision-making method[J]. Journal of China Academy of Electronics and Information Technology, 2022, 17(9): 905-910. (in Chinese)
|
[75] |
MIRHELI A, TAJALLI M, HAJIBABAI L, et al. A consensus-based distributed trajectory control in a signal-free intersection[J]. Transportation Research Part C: Emerging Technologies, 2019, 100: 161-176.
doi: 10.1016/j.trc.2019.01.004
URL
|
[76] |
COHEN L, URAS T, KOENIG S. Feasibility study: using highways for bounded-suboptimal multi-agent path finding[C]//Proceedings of the Eighth Annual Symposium on Combinatorial Search. Ein Gedi, the Dead Sea, Israel: AAAI, 2015: 2-8.
|
[77] |
COHEN L, URAS T, KUMAR T K S, et al. Improved solvers for bounded-suboptimal multi-agent path finding[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York, NY, US: IJCAI/AAAI Press, 2016: 3067-3074.
|
[78] |
ESTERLE K, KESSLER T, KNOLL A. Optimal behavior planning for autonomous driving: a generic mixed-integer formulation[C]//Proceedings of 2020 IEEE Intelligent Vehicles Symposium (IV). Las Vegas, NV, US: IEEE, 2020: 1914-1921.
|
[79] |
KESSLER T, KNOLL A. Cooperative multi-vehicle behavior coordination for autonomous driving[C]//Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV). Paris, France: IEEE, 2019: 1953-1960.
|
[80] |
XU H L, ZHANG Y, CASSANDRAS C G, et al. A bi-level cooperative driving strategy allowing lane changes[J]. Transportation Research Part C: Emerging Technologies, 2020, 120: 102773.
doi: 10.1016/j.trc.2020.102773
URL
|
[81] |
PEI H X, FENG S, ZHANG Y, et al. A cooperative driving strategy for merging at on-ramps based on dynamic programming[J]. IEEE Transactions on Vehicular Technology, 2019, 68(12): 11646-11656.
doi: 10.1109/TVT.2019.2947192
URL
|
[82] |
MIRHELI A, TAJALLI M, HAJIBABAI L, et al. A consensus-based distributed trajectory control in a signal-free intersection[J]. Transportation Research part C: Emerging Technologies, 2019, 100: 161-176.
doi: 10.1016/j.trc.2019.01.004
URL
|
[83] |
MIRHELI A, HAJIBABAI L, HAJBABAIE A. Development of a signal-head-free intersection control logic in a fully connected and autonomous vehicle environment[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 412-425.
doi: 10.1016/j.trc.2018.04.026
URL
|
[84] |
CHOI H L, KIM K S, JOHNSON L B, et al. Potential game-theoretic analysis of a market-based decentralized task allocation algorithm[M] //CHONGN Y, CHOY J. Distributed Autonomous Robotic Systems. Tokyo, Japan: Springer, 2016: 207-220.
|
[85] |
YU J, LAVALLE S M. Multi-agent path planning and network flow[J]. Springer Tracts in Advanced Robotics, 2013, 86: 157-173.
|
[86] |
LIENKE C, WISSING C, KELLER M, et al. Predictive driving: fusing prediction and planning for automated highway driving[J]. IEEE Transactions on Intelligent Vehicles, 2019, 4(3): 456-467.
doi: 10.1109/TIV.2019.2919477
URL
|
[87] |
PIERSON A, SCHWARTING W, KARAMAN S, et al. Learning risk level set parameters from data sets for safer driving[C]//Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV). Paris, France: IEEE, 2019: 273-280.
|
[88] |
HANG P, LV C, HUANG C, et al. An integrated framework of decision making and motion planning for autonomous vehicles considering social behaviors[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 14458-14469.
doi: 10.1109/TVT.2020.3040398
URL
|
[89] |
LI X P, XUE Q F, ZHAO J W, et al. Causal reasoning in multi-object interaction on the traffic scene: occlusion-aware prediction of visibility fluent[J]. IEEE Access, 2020, 8: 80527-80535.
doi: 10.1109/ACCESS.2020.2988677
URL
|
[90] |
YI Z W, LI L H, QU X, et al. Using artificial potential field theory for a cooperative control model in a connected and automated vehicles environment[J]. Transportation Research Record, 2020, 2674(9): 1005-1018.
doi: 10.1177/0361198120933271
URL
|
[91] |
TAHMASBI-SARVESTANI A, MAHJOUB H N, FALLAH Y P, et al. Implementation and evaluation of a cooperative vehicle-to-pedestrian safety application[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(4): 62-75.
doi: 10.1109/MITS.2017.2743201
URL
|
[92] |
宿浩, 张宝琳, 籍艳, 等. 基于虚拟排斥力的移动多智能体覆盖控制动态博弈算法[J]. 中国科学:信息科学, 2022, 52(12): 2195-2212.
|
|
SU H, ZHANG B L, JI Y, et al. Dynamic game coverage control algorithms for multiple mobile agents through virtual repulsive force[J]. Scientia Sinica(Informationis), 2022, 52(12): 2195-2212. (in Chinese)
|
[93] |
CHOI D, CHHABRA A, KIM D. Intelligent cooperative collision avoidance via fuzzy potential fields[J]. Robotica, 2022, 40(6): 1919-1938.
doi: 10.1017/S0263574721001454
URL
|
[94] |
LIU W, WENG Z Y, CHONG Z J, et al. Autonomous vehicle planning system design under perception limitation in pedestrian environment[C]//Proceedings of 2015 IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics. Siem Reap, Cambodia: IEEE, 2015: 159-166.
|
[95] |
KLISCHAT M, ALTHOFF M. A multi-step approach to accelerate the computation of reachable sets for road vehicles[C]//Proceedings of 2020 IEEE 23rd International Conference on Intelligent Transportation Systems. Rhodes, Greece: IEEE, 2020: 1-7.
|
[96] |
ZHAI C J, LIU Y G, LUO F. A switched control strategy of heterogeneous vehicle platoon for multiple objectives with state constraints[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(5): 1883-1896.
doi: 10.1109/TITS.2018.2841980
URL
|
[97] |
LIU C, LIN C Y, TOMIZUKA M. The convex feasible set algorithm for real time optimization in motion planning[J]. SIAM Journal on Control and optimization, 2018, 56(4): 2712-2733.
doi: 10.1137/16M1091460
URL
|
[98] |
WEI C F, ROMANO R, MERAT N, et al. Risk-based autonomous vehicle motion control with considering human driver’s behaviour[J]. Transportation Research Part C: Emerging Technologies, 2019, 107: 1-14.
doi: 10.1016/j.trc.2019.08.003
URL
|
[99] |
MANZINGER S, ALTHOFF M. Tactical decision making for cooperative vehicles using reachable sets[C]// Proceedings of 2018 21st International Conference on Intelligent Transportation Systems. Maui, HI, US:IEEE, 2018: 444-451.
|
[100] |
MANZINGER S, PEK C, ALTHOFF M. Using reachable sets for trajectory planning of automated vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2021, 6(2): 232-248.
doi: 10.1109/TIV.2020.3017342
URL
|
[101] |
SÖNTGES S, ALTHOFF M. Computing the drivable area of autonomous road vehicles in dynamic road scenes[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(6): 1855-1866.
doi: 10.1109/TITS.2017.2742141
URL
|
[102] |
ZHOU H Y, LIU C L. Distributed motion coordination using convex feasible set based model predictive control[C]// Proceedings of 2021 IEEE International Conference on Robotics and Automation. Xi’an, China:IEEE, 2021: 8330-8336.
|
[103] |
HARTMANN M, WATZENIG D. Optimal motion planning with reachable sets of vulnerable road users[C]//Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV). Paris, France, IEEE, 2019: 891-898.
|
[104] |
BRESSON R, SARAYDARYAN J, DUGDALE J, et al. Socially compliant navigation in dense crowds[C]//Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV). Paris, France: IEEE, 2019: 64-69.
|
[105] |
DING W C, ZHANG L, CHEN J, et al. Safe trajectory generation for complex urban environments using spatio-temporal semantic corridor[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 2997-3004.
doi: 10.1109/LRA.2019.2923954
URL
|
[106] |
龚建伟, 姜岩, 徐威. 无人驾驶车辆模型预测控制[M]. 北京: 北京理工大学出版社, 2014.
|
|
GONG J W, JIANG Y, XU W. Model Predictive Control for Self-driving Vehicles[M]. Beijing: Beijing Institute of Technology Press, 2014. (in Chinese)
|
[107] |
ZHOU Y, CHUNG E, BHASKAR A, et al. A state-constrained optimal control based trajectory planning strategy for cooperative freeway mainline facilitating and on-ramp merging maneuvers under congested traffic[J]. Transportation Research Part C: Emerging Technologies, 2019, 109: 321-342.
doi: 10.1016/j.trc.2019.10.017
URL
|
[108] |
CAO W J, MUKAI M, KAWABE T, et al. Cooperative vehicle path generation during merging using model predictive control with real-time optimization[J]. Control Engineering Practice, 2015, 34: 98-105.
doi: 10.1016/j.conengprac.2014.10.005
URL
|
[109] |
RIOS-TORRES J, MALIKOPOULOS A A. Automated and cooperative vehicle merging at highway on-ramps[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(4): 780-789.
doi: 10.1109/TITS.2016.2587582
URL
|
[110] |
YAN Y J, WANG J X, ZHANG K R, et al. Path planning using a kinematic driver-vehicle-road model with consideration of driver’s characteristics[C]// Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV). Paris, France:IEEE, 2019: 2259-2264.
|
[111] |
THEERTHALA R R, SAI BHARGAV KUMAR A V S, BABU M, et al. Motion planning framework for autonomous vehicles: atime scaled collision cone interleaved model predictive control approach[C]// Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV). Paris, France:IEEE, 2019: 1075-1080.
|
[112] |
JAIN V, KOLBE U, BREUEL G, et al. Reacting to multi-obstacle emergency scenarios using linear time varying model predictive control[C]// Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV). Paris, France:IEEE, 2019: 1822-1829.
|
[113] |
VAN NUNEN E, REINDERS J, SEMSAR-KAZEROONI E, et al. String stable model predictive cooperative adaptive cruise control for heterogeneous platoons[J]. IEEE Transactions on Intelligent Vehicles, 2019, 4(2): 186-196.
doi: 10.1109/TIV.2019.2904418
URL
|
[114] |
ZHAI C J, LIU Y G, LUO F. A switched control strategy of heterogeneous vehicle platoon for multiple objectives with state constraints[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(5): 1883-1896.
doi: 10.1109/TITS.2018.2841980
URL
|
[115] |
XU L W, ZHUANG W C, YIN G D, et al. Energy-oriented cruising strategy design of vehicle platoon considering communication delay and disturbance[J]. Transportation Research Part C: Emerging Technologies, 2019, 107: 34-53.
doi: 10.1016/j.trc.2019.07.019
URL
|
[116] |
EARL M G, D’ANDREA R. A decomposition approach to multi-vehicle cooperative control[J]. Robotics and Autonomous Systems, 2007, 55(4): 276-291.
doi: 10.1016/j.robot.2006.11.002
URL
|
[117] |
李樾, 韩维, 陈清阳, 等. 基于改进的速度障碍法的有人/无人机协同系统三维实时避障方法[J]. 西北工业大学学报, 2020, 38(2): 309-318.
|
|
LI Y, HAN W, CHEN Q Y, et al. Real-time obstacle avoidance for manned/unmanned aircraft cooperative system based on improved velociy obstacle method[J]. Journal of Northwestern Polytechnical University, 2020, 38(2): 309-318. (in Chinese)
doi: 10.1051/jnwpu/20203820309
URL
|
[118] |
李猛, 梁加红, 李石磊. 一种改进的多智能体碰撞避免行为[J]. 国防科技大学学报, 2013, 35(3): 92-98.
|
|
LI M, LIANG J H, LI S L. An improved collision avoidance behavior of multiple agents[J]. Journal of National University of Defense Technology, 2013, 35(3): 92-98. (in Chinese)
|
[119] |
贾高伟, 王建峰. 无人机集群任务规划方法研究综述[J]. 系统工程与电子技术, 2021, 43(1): 99-111.
|
|
JIA G W, WANG J F. Research review of uav swarm mission planning method[J]. Systems Engineering and Electronics, 2021, 43(1): 99-111. (in Chinese)
|
[120] |
FIORINI P, SHILLER Z. Motion planning in dynamic environments using velocity obstacles[J]. The international journal of robotics research, 1998, 17(7): 760-772.
doi: 10.1177/027836499801700706
URL
|
[121] |
VAN DEN BERG J, GUY S J, LIN M, et al. Reciprocal n-body collision avoidance[M]. PRADALIERC, SIEGWARTR, HIRZINGERG Robotics research. Berlin, Heidelberg, Germany: Springer, 2011: 3-19.
|
[122] |
丁季时雨, 孙科武, 董博, 等. 基于元课程强化学习的多智能体协同博弈技术[J]. 现代防御技术, 2022, 50(5): 36-42.
|
|
DING J S Y, SUN K W, DONG B, et al. Multi-agent autonomous cooperative confrontation based on meta curriculum reinforcement learning[J]. Modern Defence Technology, 2022, 50(5): 36-42. (in Chinese)
|
[123] |
曹雷. 基于深度强化学习的智能博弈对抗关键技术[J]. 指挥信息系统与技术, 2019, 10(5): 1-7.
|
|
CAO L. Key Technologies of intelligen game confrontation based on deep reinforcement learning[J]. Command Information System and Technology, 2019, 10(5): 1-7. (in Chinese)
|
[124] |
郑健, 陈建, 朱琨. 基于多智能体强化学习的无人集群协同设计[J]. 指挥信息系统与技术, 2020, 11(6): 26-31.
|
|
ZHENG J, CHEN J, ZHU K. Unmanned swarm cooperative design based on multi-agent reinforcement learning[J]. Command Information System and Technology, 2020, 11(6): 26-31. (in Chinese)
|
[125] |
MYERSON R B. Game theory[M]. Cambridge, MA, US: Harvard university press, 2013.
|
[126] |
OSBORNE M J. An introduction to game theory[M]. New York, NY, US: Oxford university press, 2004.
|
[127] |
DING N, MENG X H, XIA W G, et al. Multivehicle coordinated lane change strategy in the roundabout under internet of vehicles based on game theory and cognitive computing[J]. IEEE Transactions on Industrial Informatics, 2019, 16(8): 5435-5443.
doi: 10.1109/TII.2019.2959795
URL
|
[128] |
RASMUSEN E. Games and information: an introduction to game theory[M]. 4th ed. Hoboken, NJ, S: John Wiley & Sons, Inc., 2006.
|
[129] |
吴锋. 基于决策理论的多智能体系统规划问题研究[D]. 合肥: 中国科学技术大学, 2011.
|
|
WU F. Decision-theoretic planning for multi-agent systems[D]. Hefei: University of Science and Technology of China, 2011. (in Chinese)
|
[130] |
LIN D C, LI L, JABARI S E. Pay to change lanes: a cooperative lane-changing strategy for connected/automated driving[J]. Transportation Research Part C: Emerging Technologies, 2019, 105: 550-564.
doi: 10.1016/j.trc.2019.06.006
URL
|
[131] |
SUN X T, YIN Y F. Behaviorally stable vehicle platooning for energy savings[J]. Transportation Research Part C: Emerging Technologies, 2019, 99: 37-52.
doi: 10.1016/j.trc.2018.12.017
URL
|
[132] |
CALVO J A L, MATHAR R. Connected vehicles coordination: a coalitional game-theory approach[C]//Proceedings of 2018 European Conference on Networks and Communications. Ljubljana, Slovenia: IEEE, 2018: 1-6.
|
[133] |
LIU Y, ZONG C F, HAN X J, et al. Spacing allocation method for vehicular platoon: a cooperative game theory approach[J]. Applied Sciences, 2020, 10(16): 5589.
doi: 10.3390/app10165589
URL
|
[134] |
GATTAMI A, AL ALAM A, JOHANSSON K H, et al. Establishing safety for heavy duty vehicle platooning: a game theoretical approach[J]. IFAC Proceedings Volumes, 2011, 44(1): 3818-3823.
doi: 10.3182/20110828-6-IT-1002.02071
URL
|
[135] |
AMAR H M, BASIR O A. A game theoretic solution for the territory sharing problem in social taxi networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(7): 2114-2124.
doi: 10.1109/TITS.2018.2825654
URL
|
[136] |
JI A, LEVINSON D. A review of game theory models of lane changing[J]. Transportmetrica A: Transport Science, 2020, 16(3): 1628-1647.
doi: 10.1080/23249935.2020.1770368
URL
|
[137] |
ALI Y, ZHENG Z D, HAQUE M M, et al. A game theory-based approach for modelling mandatory lane-changing behaviour in a connected environment[J]. Transportation research part C: emerging technologies, 2019, 106: 220-242.
doi: 10.1016/j.trc.2019.07.011
URL
|
[138] |
YOO J, LANGARI R. A predictive perception model and control strategy for collision-free autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(11): 4078-4091.
doi: 10.1109/TITS.2018.2880409
URL
|
[139] |
FABIANI F, GRAMMATICO S. Multi-vehicle automated driving as a generalized mixed-integer potential game[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(3): 1064-1073.
doi: 10.1109/TITS.2019.2901505
URL
|
[140] |
PHILIPPE C, ADOUANE L, TSOURDOS A, et al. Probability collectives algorithm applied to decentralized intersection coordination for connected autonomous vehicles[C]//Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV). Paris, France: IEEE, 2019: 1928-1934.
|
[141] |
WANG Y W, REN Y, ELLIOTT S, et al. Enabling courteous vehicle interactions through game-based and dynamics-aware intent inference[J]. IEEE Transactions on Intelligent Vehicles, 2019, 5(2): 217-228.
|
[142] |
DING N, MENG X H, XIA W G, et al. Multivehicle coordinated lane change strategy in the roundabout under internet of vehicles based on game theory and cognitive computing[J]. IEEE Transactions on Industrial Informatics, 2019, 16(8): 5435-5443.
doi: 10.1109/TII.2019.2959795
URL
|
[143] |
刘阳. 基于博弈论的车辆队列协同分层控制算法研究[D]. 长春: 吉林大学, 2020.
|
|
LIU Y. Research on hierarchical control algorithm of motion cooperation for vehicle platoon based on game theory[D]. Changchun: Jilin University, 2020. (in Chinese)
|
[144] |
REN W, BEARD R W. Distributed consensus in multi-vehicle cooperative control[M]. London, UK: Springer, 2008.
|
[145] |
MIRHELI A, TAJALLI M, HAJIBABAI L, et al. A consensus-based distributed trajectory control in a signal-free intersection[J]. Transportation Research Part C: Emerging Technologies, 2019, 100: 161-176.
doi: 10.1016/j.trc.2019.01.004
URL
|
[146] |
MOLINARI F, RAISCH J. Automation of road intersections using consensus-based auction algorithms[C]//Proceedings of 2018 Annual American Control Conference. Milwaukee, WI, US: IEEE, 2018: 5994-6001.
|
[147] |
SANTINI S, SALVI A, VALENTE A S, et al. Platooning maneuvers in vehicular networks: a distributed and consensus-based approach[J]. IEEE Transactions on Intelligent Vehicles, 2018, 4(1): 59-72.
doi: 10.1109/TIV.2018.2886677
URL
|
[148] |
LI Y F, TANG C C, LI K Z, et al. Consensus-based cooperative control for multi-platoon under the connected vehicles environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(6): 2220-2229.
doi: 10.1109/TITS.2018.2865575
URL
|
[149] |
LI Y F, TANG C C, PEETA S, et al. Nonlinear consensus-based connected vehicle platoon control incorporating car-following interactions and heterogeneous time delays[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(6): 2209-2219.
doi: 10.1109/TITS.2018.2865546
URL
|
[150] |
YE F, GUO J L, KIM K J, et al. Bi-level optimal edge computing model for on-ramp merging in connected vehicle environment[C]//Proceedings of 2019 IEEE Intelligent Vehicles Symposium (IV). Paris, France: IEEE, 2019: 2005-2011.
|
[151] |
KULATUNGA A K, LIU D K, DISSANAYAKE G, et al. Ant colony optimization based simultaneous task allocation and path planning of autonomous vehicles[C]//Proceedings of 2006 IEEE Conference on Cybernetics and Intelligent Systems. Bangkok, Thailand: IEEE, 2006: 1-6.
|
[152] |
PEI H X, FENG S, ZHANG Y, et al. A cooperative driving strategy for merging at on-ramps based on dynamic programming[J]. IEEE Transactions on Vehicular Technology, 2019, 68(12): 11646-11656.
doi: 10.1109/TVT.2019.2947192
URL
|