欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2023, Vol. 44 ›› Issue (1): 11-26.doi: 10.12382/bgxb.2022.0930

所属专题: 特种车辆理论与技术

• • 上一篇    下一篇

无人集群系统协同运动规划技术综述

孔国杰1,2, 冯时1, 于会龙1, 巨志扬1(), 龚建伟1   

  1. 1 北京理工大学 机械与车辆学院, 北京 100081
    2 32398部队, 北京 100192
  • 收稿日期:2022-09-30 上线日期:2023-02-10
  • 通讯作者:
  • 基金资助:
    北京理工大学青年教师学术启动计划项目(2022年)

A Review on Cooperative Motion Planning of Unmanned Vehicles

KONG Guojie1,2, FENG Shi1, YU Huilong1, JU Zhiyang1(), GONG Jianwei1   

  1. 1 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
    2 Unit 32398 of PLA, Beijing 100192, China
  • Received:2022-09-30 Online:2023-02-10

摘要:

地面无人集群由多个地面无人移动平台构成,能够通过各无人平台间相互协同完成统一的系统协同目标,在军事和交通系统等领域能够发挥重要的作用。协同运动规划作为无人集群系统协同的关键技术之一,近年来在理论和应用等方面的研究受到越来越多的关注。针对此研究问题,归纳总结了近年来相关领域的无人集群系统协同运动规划的研究成果,阐述了无人集群协同运动规划技术的研究背景和意义,结合国内外发展现状和研究进展,对多车协同系统的应用进行了表述,并根据主流研究方法使用的框架和算法,对现有的协同运动规划技术进行分类,并讨论了各类方法的主要特点,同时对相关代表性工作进行讨论,提出了无人集群协同规划技术面临的挑战和未来发展方向。

关键词: 无人车辆, 多车协同, 运动规划, 多智能体系统协同

Abstract:

An unmanned ground swarm system consists of multiple unmanned ground mobile platforms, which can achieve common objectives through cooperation and has promising applications in military and transportation systems. Cooperative motion planning is one of the key technologies in the cooperation of unmanned swarm systems or vehicles. It has received increasing attention in both theoretical and application research. This review summarizes and analyzes recent advances in cooperative motion planning of unmanned swarm systems, and provides the background of relevant research. Then the techniques utilized in cooperative motion planning and its applications are briefly discussed considering its development in China and beyond. These techniques are categorized according to different frameworks and algorithms. With such a classification, representative works are discussed regarding their features. Moreover, the challenges and future development of cooperative motion planning are proposed.

Key words: unmanned vehicles, cooperation of multiple vehicles, motion planning, cooperation of multi-agent systems

中图分类号: