欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

波浪与爆炸载荷下船体梁结构耦合毁伤效应

沈超1,2,3*,张显丕1,2,3,汪俊1,2,3,朱方舟1,2,3,陈继平1,2,3   

  1. (1. 中国船舶科学研究中心,江苏 无锡 214082;2. 深海技术科学太湖实验室,江苏 无锡 214082;3. 船舶结构安全全国重点实验室,江苏 无锡 214082)
  • 收稿日期:2025-03-25 修回日期:2025-05-26
  • 通讯作者: *邮箱:shenchao@njust.edu.cn

Coupled Damage Effects of Ship Hull Girder Structures Under Wave and Explosive Loads

SHEN Chao1,2,3*, ZHANG Xianpi1,2,3,WANG Jun1,2,3, ZHU Fangzhou1,2,3, CHEN Jiping1,2,3   

  1. (1.China Ship Scientific Research Center,Wuxi 214082, Jiangsu, China;2. Taihu Laboratory for Deepsea Technology Science, Wuxi 214082, Jiangsu, China; 3. National Key Laboratory of Ship Structure Safety, Wuxi 214082, Jiangsu, China)
  • Received:2025-03-25 Revised:2025-05-26

摘要: 复杂海浪环境和水下爆炸载荷的联合作用下水面船结构动响应以及毁伤规律较单一水下爆炸环境或单一海浪环境等理想状态更为复杂。为此,以典型船体梁模型为研究对象开展了波浪及水下爆炸冲击联合载荷作用下毁伤特征参数试验测量。根据装药和水面波浪条件的不同开展了7个工况的水下中近场爆炸试验,结合光学+电学测量的方法,获得了波浪及爆炸载荷联合作用下典型船体梁结构毁伤数据。试验后结合数值计算对结构毁伤效应特征参数进行分析,建立了结构毁伤动响应点到场的配置技术以及波浪与爆炸载荷下结构毁伤效应解耦方法。研究结果表明:船体梁结构模型的整体凹陷变形范围与底面中心的应变近似满足指数函数关系,可以通过试验测量得到的底板中心应变峰值,推及整个底板的凹陷变形范围,进而计算得到塑性变形区域面积,计算得到的塑性区域面积不低于90%以上的试验实测面积;通过提取单一波浪载荷、单一水下爆炸载荷以及波浪-爆炸联合载荷作用下水面船模型的毁伤效应场特征参数,发现模型在3类载荷作用下的毁伤效应场特征参数近似满足三维平面关系,通过给出毁伤效应场特征参数耦合公式实现了综合毁伤测量数据的解耦。

关键词: 波浪, 水下爆炸, 船体梁, 试验研究, 解耦方法

Abstract: Under the combined action of complex wave environments and underwater explosive loads, the dynamic response and damage mechanisms of surface ship structures exhibit significantly greater complexity compared to idealized conditions of single underwater explosion or wave environments. This study focuses on a typical hull girder model to investigate damage characteristic parameters under combined wave and underwater explosion shock loading. Seven test cases of mid-to-near-field underwater explosions were conducted with varying charge weights and surface wave conditions. Through combined optical and electrical measurement methods, critical damage data of the hull girder structure under coupled wave-explosion loading were obtained.Post-experimental numerical analysis enabled the development of two key methodologies: a dynamic response field configuration technique for structural damage points, and a decoupling method for structural damage effects under combined wave and explosion loads. The experimental results reveal that: The global denting deformation range of the hull girder model follows an approximate exponential function relationship with the central bottom strain. The peak strain at the bottom center measured experimentally can effectively predict the denting deformation range across the entire bottom plate, enabling calculation of plastic deformation areas. The computed plastic zones consistently cover ≥90% of experimentally measured areas. By extracting damage field characteristic parameters under three loading conditions (pure wave, pure explosion, and combined loading), a three-dimensional planar relationship among these parameters was identified. A coupled damage parameter formula was established, achieving effective decoupling of comprehensive damage measurement data.This research provides quantitative characterization methods and theoretical foundations for assessing warship survivability in complex marine environments.

Key words: wave environment, underwater explosion, hull girder, experimental study, decoupling method

中图分类号: