欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

泡沫铝夹芯板在水中冲击载荷作用下的动态响应与能量耗散

韦振乾1,荣吉利 1*,韦辉阳2,李富荣3,陈子超1   

  1. (1. 北京理工大学 宇航学院, 北京100081; 2. 厦门航空有限公司, 福建 厦门361006; 3. 北京机电工程研究所, 北京100074)
  • 收稿日期:2024-07-03 修回日期:2024-11-07
  • 通讯作者: *通信邮箱:rongjili@bit.edu.cn
  • 基金资助:
    国家自然科学基金(11972091)

Dynamic Response and Energy Dissipation of Foam Aluminum Sandwich Panel Subjected to Underwater Impulse Loading

WEI Zhenqian1,RONG Jili1*, WEI Huiyang2, LI Furong3, CHEN Zichao1   

  1. (1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China; 2. Xiamen Airlines Co., Ltd., Xiamen 361006, Fujian, China; 3. Beijing Institute of Mechanical and Electrical Engineering, Beijing 100074, China)
  • Received:2024-07-03 Revised:2024-11-07
  • Supported by:
    National Natural Science Foundation of China(11972091)

摘要: 针对泡沫铝夹芯板在水下冲击载荷下的动态响应和能量耗散机制进行了深入分析,旨在为舰船和海洋工程结构的防护设计提供科学依据。通过水下爆炸等效冲击试验和流固耦合仿真,验证了试验与仿真结果的一致性,量化了结构参数不同芯层质量比、面板厚度和泡沫铝密度与冲击载荷对夹芯板抗冲击性能的影响。利用神经网络和遗传算法,对夹芯板结构进行了多目标优化。结果表明,受到水下冲击载荷后,泡沫铝夹层板出现局部压溃和边界剪切等变形模式;夹芯板质量一定时,存在最佳的芯层质量比和最佳湿面板厚度,且随着无量纲冲量的增大而增大;随着湿面板厚度和芯层密度降低,芯层压缩变形吸能效率增加;优化后的夹芯板变形和质量均显著减小,能够为实际工程应用提供有效指导。

关键词: 泡沫铝, 水下爆炸, 能量耗散, 抗冲击性能, 优化设计

Abstract: The dynamic response and energy dissipation mechanism of foam aluminum sandwich panel under underwater impact load are analyzed, aiming to provide a scientific basis for the design of ships and marine engineering structures. Through the underwater explosion equivalent impact test and simulation, the consistency between the test and simulation results was verified. The influence of structural parameters such as different core layer mass ratio, panel thickness, foam aluminum density and impact load on the impact resistance of sandwich panels was quantified. Multi objective optimization of sandwich panel structure was carried out using neural network and genetic algorithm. The results show that local collapse and boundary shear occur when subjected to underwater impact loading; When the quality of the sandwich panel is constant, there exists an optimal core layer mass ratio and optimal wet panel thickness, which increase with the increase of dimensionless impulse; As the thickness of the wet panel and the density of the core layer decrease, the energy absorption efficiency of the compression deformation of the core layer increases; The optimized sandwich panel has significantly reduced deformation and quality, which can provide effective guidance for practical engineering applications.

Key words: foam sandwich panel, underwater explosion, energy dissipation, impact resistance performance, optimization