欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (12): 4407-4422.doi: 10.12382/bgxb.2023.0989

• • 上一篇    下一篇

Zr基BMG-W含能破片的力学性能与毁伤性能

胡敖博1, 赵超越1, 陈进1, 陈鹏1, 李鹏1, 孙兴昀1, 蔡水洲2,*()   

  1. 1 西安近代化学研究所, 陕西 西安 710065
    2 华中科技大学 材料科学与工程学院, 湖北 武汉 430074
  • 收稿日期:2023-10-07 上线日期:2024-02-19
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(12402462)

Mechanical Properties and Damage Performance of Zr-based BMG-W Energetic Fragments

HU Aobo1, ZHAO Chaoyue1, CHEN Jin1, CHEN Peng1, LI Peng1, SUN Xingyun1, CAI Shuizhou2,*()   

  1. 1 Xi’an Modern Chemistry Research Institute, Xi’an 710065, Shaanxi, China
    2 School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • Received:2023-10-07 Online:2024-02-19

摘要:

为揭示Zr基块体金属玻璃(Bulk Metallic Glass,BMG)-W含能破片的强塑性协同提升机制,并阐明其冲击毁伤过程,采用放电等离子烧结法制备了系列球形W颗粒含量不同的Zr基BMG-W含能破片,并通过准静态压缩与弹道枪加载侵彻双层靶实验深入研究其力学性能与毁伤性能。研究结果表明:W颗粒的添加显著提升了Zr基BMG-W含能破片的力学性能,烧结温度为 370~385℃,W颗粒体积含量为20%~40%的Zr基BMG-W含能破片均具有优于纯BMG的强度与塑性,其中380℃下制备的Zr基BMG-40W含能破片的断裂强度与塑性应变最大,分别为 2047.0MPa 与16.6%。Zr基BMG-W含能破片的强塑性协同提升机制包含2方面:W颗粒阻碍剪切带快速扩展,使其转向、增殖,延缓含能破片的断裂失效;模量失配引起的剪切带萌生与扩展使W颗粒附近BMG基体中形成局部塑性变形区域,降低了BMG基体对W颗粒的空间约束,W颗粒自身发生塑性变形,推迟含能破片的断裂失效。随W颗粒含量增加,Zr基BMG-W含能破片的毁伤性能先增加、后减小,但均优于纯BMG含能破片,其中Zr基BMG-40W含能破片的毁伤性能最强,扩孔比为27.9。Zr基BMG-W含能破片的冲击毁伤过程主要包括一次爆燃、动能穿孔、二次爆燃与后效毁伤。

关键词: 含能破片, 力学性能, 双层靶, 毁伤性能, 扩孔面积

Abstract:

To reveal the synergistic enhancement mechanism of strength and plasticity of Zr-based BMG-W energetic fragments and elucidate their impact damage process, a series of Zr-based BMG-W energetic fragments with different spherical W particle contents are prepared by the spark plasma sintering method. The mechanical properties and damage performance of Zr-based BMG-W energetic fragments are thoroughly studied through quasi-static compression experiments and ballistic gun loading penetration experiments on double-layer targets. The research results show that the addition of W particles significantly improves the mechanical properties of Zr-based BMG-W energetic fragments. The Zr-based BMG-W energetic fragments with sintering temperature ranging from 370℃ to 385℃ and W particle content ranging from 20 vol.% to 40 vol.% have better strength and plasticity than pure BMG energetic fragments. Among them, the Zr-based BMG-40W energetic fragment prepared at 380℃ has the highest fracture strength and plastic strain, which are 2047.0MPa and 16.6%, respectively. The synergistic enhancement mechanism of strength and plasticity of Zr-based BMG-W energetic fragments includes two aspects: W particles hinder the rapid expansion of shear bands, promote their turning and proliferation, and delay the fracture failure of energetic fragment; the initiation and propagation of shear bands caused by modulus mismatch result in the formation of local plastic deformation zones in the BMG matrix near the W particles, reducing the spatial constraint of BMG matrix on the W particles. The W particles themselves undergo plastic deformation, delaying the fracture failure of energetic fragments. With the increase in W particle content, the damage performance of the Zr-based BMG-W energetic fragments increases first and then decreases, but all are better than pure BMG energetic fragments. Among them, the Zr-based BMG-40W energetic fragment has the strongest damage performance with an expansion ratio of 27.9. The impact damage process of Zr-based BMG-W energetic fragments mainly includes primary detonation, kinetic energy perforation, secondary detonation, and aftereffect damage.

Key words: energetic fragment, mechanical property, double-layer target, damage performance, expanding perforation area

中图分类号: