[1] |
CHEN H, ZENG T Y, SHI Q Q, et al. Microstructure evolution and mechanical properties during long-term tempering of a low carbon martensitic stainless bearing steel[J]. Journal of Materials Research and Technology, 2023, 25:297-309.
|
[2] |
CHEN X F, ZHENG L J, FENG S C, et al. Tempering influence on microstructural evolution and mechanical properties in a core of CSS-42L bearing steel[J]. Materials Science and Engineering:A, 2022, 861:144233.
|
[3] |
ZENG T Y, LI W, WANG N M, et al. Microstructural evolution during tempering and intrinsic strengthening mechanisms in a low carbon martensitic stainless bearing steel[J]. Materials Science and Engineering:A, 2022, 836:142736.
|
[4] |
田勇, 宋超伟, 葛泉江, 等. 航空用高温轴承钢CSS-42L热处理技术及其展望[J]. 轧钢, 2019, 36(6):1-5,28.
|
|
TIAN Y, SONG C W, GE Q J, et al. Status of research and development of treatment techniques for heat resistant bearing steel CSS-42L applied for aviation[J]. Steel Rolling, 2019, 36(6):1-5,28. (in Chinese)
|
[5] |
郭春成, 亓海全, 迟宏宵, 等. 1900 MPa 级耐热轴承钢的热变形行为与热加工图[J]. 金属热处理,2024, 49(4):26-34.
|
|
GUO C C, QI H Q, CHI H X, et al. Thermal deformation behavior and hot processing maps of 1900 MPa grade heat-resistant bearing steel[J]. Heat Treatment of Metals, 2024, 49(4):26-34. (in Chinese)
|
[6] |
郑凯, 曹文全, 俞峰, 等. 高温不锈渗碳轴承钢的研发现状与进展[J]. 钢铁, 2022, 57(7):125-136.
doi: 10.13228/j.boyuan.issn0449-749x.20210800
|
|
ZHENG K, CAO W Q, YU F, et al. Research status and process of high temperature stainless carburized bearing steel[J]. Iron and Steel, 2022, 57(7):125-136. (in Chinese)
|
[7] |
杨彬, 王迎春, 迟宏宵, 等. 形变热处理对低碳Co-Cr-Mo-Ni合金钢组织性能的影响[J]. 钢铁研究学报, 2024, 36(3):389-395.
doi: DOI:10.13228/j.boyuan.issn1001-0963.20230202
|
|
YANG B, WANG Y C, CHI H X, et al. Microstructure and mechanical properties of a low-carbon Co-Cr-Mo-Ni steel processed by thermo-mechanical treatment[J]. Journal of Iron and Steel Research, 2024, 36(3):389-395. (in Chinese)
|
[8] |
郑善举, 杨卯生, 雷霆, 等. 冷处理对16Cr14Co12Mo5 轴承钢组织和性能的影响[J]. 钢铁, 2012, 47(12):77-80.
|
|
ZHENG S J, YANG M S, LEI T, et al. Effect of cold treatment on microstructure and mechanical properties of 16Cr14Co12Mo5 bearing steel[J]. Iron and Steel, 2012, 47(12):77-80. (in Chinese)
|
[9] |
ZHANG Y P, ZHAN D P, QI X W, et al. Effect of tempering temperature on the microstructure and properties of ultrahigh-strength stainless steel[J]. Journal of Materials Science and Technology, 2019, 35:1240-1249.
|
[10] |
YANG Z, LIU Z B, LIANG J X, et al. Elucidating the role of secondary cryogenic treatment on mechanical properties of a martensitic ultra-high strength stainless steel[J]. Materials Characterization, 2021, 178:111277.
|
[11] |
肖桂枝, 张李豪, 庞玉华, 等. 热处理对14Cr14Co12Mo5低碳马氏体轴承钢组织性能的影响[J]. 材料热处理学报, 2023, 44(10):165-173.
|
|
XIAO G Z, ZHANG L H, PANG Y H, et al. Effect of heat treatment on microstructure and properties of 4Cr14Co12Mo5 low carbon martensitic bearing steel[J]. Transactions of Materials and Heat Treatment, 2023, 44(10):165-173. (in Chinese)
|
[12] |
LIU Z B, YANG Z, WANG X H, et al. Enhanced strength-ductility synergy in a new 2.2 GPa grade ultra-high strength stainless steel with balanced fracture toughness:elucidating the role of duplex aging treatment[J]. Journal of Alloys and Compounds, 2022, 928(20):167135.
|
[13] |
LI S H, XIAO M G, YE G M, et al. Effects of deep cryogenic treatment on microstructural evolution and alloy phases precipitation of a new low carbon martensitic stainless bearing steel during aging[J]. Materials Science and Engineering:A, 2018, 732(8):167-177.
|
[14] |
白璇. 冷处理对超级马氏体不锈钢组织和逆变奥氏体的影响[D]. 昆明: 昆明理工大学, 2016.
|
|
BAI X. Effect of cold treatment on microstructure and reversed austenite of super martensitic stainless steel[D]. Kunming: Kunming University of Science and Technology, 2016. (in Chinese)
|
[15] |
LU X Y, WU Z W, HE X, et al. Effect of deep cryogenic treatment on martensitic lath refinement and nano-twins for-mation of low carbon bearing steel[J]. Journal of Iron and Steel Research,International, 2020, 27(1):105.
|
[16] |
孟玲菊, 张亚斋, 夏为栋. 深冷时间对06Cr25Ni20不锈钢组织与性能的影响[J]. 热加工工艺, 2023, 52(18):132-135.
|
|
MENG L J, ZHANG Y Z, XIA W D. Effects of cryogenic time on microstructure and properties of 06Cr25Ni20 stainless steel[J]. Hot Working Technology, 2023, 52(18):132-135. (in Chinese)
|
[17] |
任媛. 深冷时间对40CrMnNiMo结构钢组织与力学性能的影响[J]. 热加工工艺, 2022, 51(2):142-144.
|
|
REN Y. Effects of cryogenic time on microstructure and properties of 40CrMnNiMo structural steel[J]. Hot Working Technology, 2022, 51(2):142-144. (in Chinese)
|
[18] |
UNGÁR T, OTT S, SANDERS P G, et al. Dislocations,grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis[J]. Acta Materialia, 1998, 46(10):3693-3699.
|
[19] |
LI S H, ZHAO K, WANG K, et al. Microstructural evolution and thermal stability after aging of a cobalt-containing martensite bearing steel[J]. Materials Characterization, 2017, 124:154-164.
|
[20] |
JU Y L, GOODALL A, STRANGWOOD M, et al. Characterisation of precipitation and carbide coarsening in low carbon low alloy Q&T steels during the early stages of tempering[J]. Materials Science and Engineering:A, 2018, 738(19):174-189.
|