欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

机载线阵激光雷达动态成像建模与验证

王伟翰, 高铭泽, 施小龙, 胡诗苑, 吴沿江, 陈慧敏*()   

  1. (北京理工大学 机电动态控制重点实验室, 北京 100081)
  • 收稿日期:2024-09-12 修回日期:2024-11-20
  • 通讯作者: *邮箱:laserchn@126.com

Modeling and Verification of Dynamic Imaging of UAV-based Line-array LiDAR

WANG Weihan, GAO Mingze, SHI Xiaolong, HU Shiyuan, WU Yanjiang, CHEN Huimin*()   

  1. (Science and Technology on Electromechanical Dynamic Control Laboratory, Beijing Institute of Technology, Beijing 100081, China)
  • Received:2024-09-12 Revised:2024-11-20

摘要: 针对无人机成像场景典型目标点云数据集稀缺的问题,建立机载线阵激光雷达动态成像模型,并提出一种基于柱体素的点云目标检测算法对仿真数据真实性进行验证。基于虚拟仿真平台建立典型目标模型与崎岖地形、伪装覆盖和植被遮蔽等典型场景,结合激光点云获取仿真模型、机载平台运动模型、拼接成像及畸变校正方法,获取激光点云数据集,基于重叠面积的完整度判别标注方法进行数据集标注;采用柱体素特征提取模块处理目标顶部特征,通过标注的仿真数据集训练点云目标检测算法,并在基于等效实验获取的真实数据集上进行算法评价。检测算法在实测数据集上的识别准确率为93.2 %,评价结果表明机载线阵激光雷达动态成像模型具有较高的可信度,仿真数据能够反映真实目标特征。

关键词: 线阵激光雷达, 推扫成像, 激光点云, 无人机, 目标识别

Abstract: A dynamic imaging model for UAV-based line-array LiDAR is proposed to address the scarcity of point cloud datasets in UAV imaging scene. A pillar-voxel based point cloud target detection algorithm is proposed to verify the authenticity of the simulation data. Establish typical target models and scenarios with rugged terrain, camouflage, and vegetation cover within a virtual simulation platform. Combine point cloud simulation model, UAV motion model, stitching imaging and distortion correction methods to generate the point cloud dataset. Annotate the dataset using a completeness judgment method based on overlapping areas. Use a pilar-voxel feature extraction module to process the target's top features. Train the point cloud target detection algorithm using the annotated simulation dataset, and evaluate the algorithm on a real dataset obtained from equivalent experiments. The detection algorithm achieves an accuracy rate of 93.2% on the real dataset. The evaluation result indicates that the simulation data effectively reflect the true characteristics of the targets, and the dynamic imaging model has high credibility.

Key words: line-array LiDAR, pushbroom imaging, laser point cloud, unmanned aerial vehicle, target recognition

中图分类号: