[1] |
王靖宇, 王霰禹, 张科, 等. 基于深度神经网络的低空弱小无人机目标检测研究[J]. 西北工业大学学报, 2018, 36(2):258-263.
|
|
WANG J Y, WANG X Y, ZHANG K, et al. Research on low altitude weak small unmanned aerial vehicle target detection based on deep neural network[J]. Journal of Northwestern Polytechnical University, 2018, 36(2):258-263. (in Chinese)
|
[2] |
WEILER M, CESA G. General E(2) -equivariant steerable CNNs[C]//Advances in Neural Information Processing Systems 32(NeurIPS 2019). Red Hook, NY, US: Curran Associates, Inc., 2019.
|
[3] |
殷飞, 焦李成. 基于旋转扩展和稀疏表示的鲁棒遥感图像目标识别[J]. 模式识别与人工智能, 2012, 25(1):89-95.
|
|
YIN F, JIAO L C. Robust remote sensing image target recognition based on rotation extension and sparse representation[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(1):89-95. (in Chinese)
|
[4] |
JIANG Y Y, ZHU X Y, WANG X B, et al. R2CNN: rotational region CNN for orientation robust scene text detection: arXiv:1706.09579[R/OL]. Ithaca, NY, US: Cornell University, 2017(2017-06-30). https://arxiv.org/abs/1706.09579.
|
[5] |
XIA G S, DING J, QIAN M, et al. LUAI Challenge 2021 on learning to understand aerial images[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal, BC, Canada:IEEE,2021: 762-768.
|
[6] |
NABATI R, QI H R. RRPN: radar region proposal network for object detection in autonomous vehicles[C]//Proceedings of 2019 IEEE International Conference on Image Processing. Taipei, China:IEEE,2019: 3093-3097.
|
[7] |
XIN Y, CHEN D L, ZENG C Y, et al. High throughput hardware/software heterogeneous system for RRPN-based scene text detection[J]. IEEE Transactions on Computers, 2022, 71(7):1507-1521.
|
[8] |
YANG X, YAN J C, FENG Z M, et al. R3det: refined single-stage detector with feature refinement for rotating object[C]// Proceedings of the AAAI conference on artificial intelligence. Washington, DC, US:AAAI,2021: 3163-3171.
|
[9] |
HAN J M, DING J, XUE N, et al. Redet: a rotation-equivariant detector for aerial object detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, US:IEEE,2021: 2786-2795.
|
[10] |
XIE X X, CHENG G, WANG J B, et al. Oriented R-CNN for object detection[C]//Proceedings of the IEEE/CVF international conference on computer vision. Montreal, QC, Canada:IEEE,2021: 3500-3509.
|
[11] |
COHEN T S, GEIGER M, WEILER M. A general theory of equivariant CNNs on homogeneous spaces[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver, Canada: Neural Information Processing Systems Foundation, Inc.,2019: 9145-9156.
|
[12] |
WEILER M, HAMPRECHT F A, STORATH M. Learning steerable filters for rotation equivariant CNNs[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, US: Neural Information Processing Systems Foundation, Inc., 2018: 849-858.
|
[13] |
SHEN Z Y, HE L S, LIN Z C, et al. PDO-eConvs: partial differential operator based equivariant convolutions[C]// Proceedings of the 37th International Conference on Machine Learning. Vienna, Austria:ICML,2020:8697-8706.
|
[14] |
XIE Q, ZHAO Q, XU Z B, et al. Fourier series expansion based filter parametrization for equivariant convolutions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(4): 4537-4551.
|
[15] |
于博文, 吕明. 改进的YOLOv3算法及其在军事目标检测中的应用[J]. 兵工学报, 2022, 43(2): 345-354.
doi: 10.3969/j.issn.1000-1093.2022.02.012
|
|
YU B W, LÜ M. Improved YOLOv3 algorithm and its application in military target detection[J]. Acta Armamentarii, 2022, 43(2): 345-354. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2022.02.012
|
[16] |
张博尧, 冷雁冰. 基于YOLOv4网络模型的金属表面划痕检测[J]. 兵工学报, 2022, 43(增刊1): 214-221.
|
|
ZHANG B Y, LENG Y B. Detection of metal surface scratch based on YOLOv4 network model[J]. Acta Armamentarii, 2022, 43(S1): 214-221. (in Chinese)
doi: 10.12382/bgxb.2022.A011
|
[17] |
陈旭, 彭冬亮, 谷雨. 基于改进 YOLOv5s 的无人机图像实时目标检测[J]. 光电工程, 2022, 49(3): 210372.
|
|
CHEN X, PENG D L, GU Y. Real time object detection of unmanned aerial vehicle images based on improved YOLOv5s[J]. Opto-Electronic Engineering, 2022, 49(3): 210372. (in Chinese)
|
[18] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, US:IEEE, 2018: 7132-7141.
|
[19] |
张汝榛, 张建林, 祁小平, 等. 复杂场景下的红外目标检测[J]. 光电工程, 2020, 47(10):128-137.
|
|
ZHANG R Z, ZHANG J L, QI X P, et al. Infrared target detection in complex scenes[J]. Opto-Electronic Engineering, 2020, 47(10):128-137. (in Chinese)
|
[20] |
GAO W S, ZHANG X G, YANG L, et al. An improved Sobel edge detection[C]//Proceedings of the 2010 3rd International conference on computer science and information technology. Chengdu, China:IEEE, 2010: 67-71.
|
[21] |
WANG Z, GUO J X, ZHANG C L, et al. Multiscale feature enhancement network for salient object detection in optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5634819.
|
[22] |
王亮, 陈建华, 李烨. 一种基于深度学习的无人艇海上目标识别技术[J]. 兵工学报, 2022, 43(增刊2): 13-19.
|
|
WANG L, CHEN J H, LI Y. A target identification technique for unmanned surface vessel based on deep learning[J]. Acta Armamentarii, 2022, 43(S2): 13-19. (in Chinese)
doi: 10.12382/bgxb.2022.B021
|