欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (S1): 43-50.doi: 10.12382/bgxb.2024.0552

• • 上一篇    下一篇

基于判别性无穷模糊受限玻尔兹曼机模型的HRRP序列识别

陈士超1,*(), 魏靖彪2, 范俊2, 魏玺章3,**(), 王泽朝3, 孙谦1, 刘明4   

  1. 1 西北工业大学 电子信息学院, 陕西 西安 710072
    2 陆军航空兵研究所, 北京 101121
    3 中山大学 电子与通信工程学院, 广东 深圳 518107
    4 陕西师范大学 计算机科学学院, 陕西 西安 710119
  • 收稿日期:2024-07-05 上线日期:2024-11-06
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(62271408); 国家自然科学基金项目(62471393); 中央高校基本科研业务费资助项目(G2024KY05104)

Research on HRRP Sequences Recognition Based on Discriminative Infinite Fuzzy Restricted Boltzmann Machine Model

CHEN Shichao1,*(), WEI Jingbiao2, FAN Jun2, WEI Xizhang3,**(), WANG Zechao3, SUN Qian1, LIU Ming4   

  1. 1 School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China
    2 Army Aviation Research Institute, Beijing 101121, China
    3 School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
    4 School of Computer Science, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
  • Received:2024-07-05 Online:2024-11-06

摘要:

针对雷达高分辨率距离像(High Resolution Range Profiles,HRRP)序列数据在受干扰或背景杂波严重时目标识别性能较差的问题,提出一种判别性无穷模糊受限玻尔兹曼机(Discriminative Infinite Fuzzy Re-stricted Boltzmann Machine,Dis-iFRBM)模型。该模型结合判别性受限玻尔兹曼机分类和无穷受限玻尔兹曼机模型复杂度自适应特点,汲取模糊神经网络在低信噪比环境下提取特征更稳定的优点,将模型参数从实数扩展为模糊参数,实现了对HRRP序列数据原始特征的更稳定提取以及对雷达目标的更稳健识别。通过对多个HRRP序列的识别实验,验证了Dis-iFRBM的识别稳定性以及鲁棒性,与其他模型的对比实验验证了所提模型在“噪声”环境中的有效性和优越性。

关键词: 高分辨率距离像, 目标识别, 判别性无穷模糊受限玻尔兹曼机, 随机排列, 噪声数据

Abstract:

Aiming at the problem of poor target recognition of radar high-resolution range profiles (HRRP) sequences in the presence of interference or severe background clutter, a discriminative infinite fuzzy restricted Boltzmann machine (Dis-iFRBM) model is proposed. The proposed model employs a combination of two distinct machine learning techniques: discriminative restricted Boltzmann machine (Dis-RBM) classification and infinite restricted Boltzmann machine (iRBM) model complexity adaptive features. The model parameters are extended from real numbers to fuzzy parameters, drawing on the advantages of the fuzzy neural network in extracting the features more stably in a low signal-to-noise ratio environment. This approach achieves a more stable extraction of the original features of HRRP sequences as well as more robust recognition of radar targets. The recognition stability and robustness of Dis-iFRBM are validated through recognition experiments on several HRRP sequences, and the comparison experiments the proposed model and other models demonstrate the effectiveness and superiority of the proposed model in the "noisy" environment.

Key words: high-resolution range profile, target recognition, discriminative infinite fuzzy restricted Boltzmann machine, random permutation, noisy data

中图分类号: