[1] |
HUANG Y Q, DING W R, LI H G. Haze removal for UAV reconnaissance images using layered scattering model[J]. Chinese Journal of Aeronautics, 2016, 29(2): 502-511.
|
[2] |
GAO S, WU J Z, AI J L. Multi-UAV reconnaissance task allocation for heterogeneous targets using grouping ant colony optimization algorithm[J]. Soft Computing, 2021, 25(10): 7155-7167.
|
[3] |
YANG X, XU W D, JIA Q, et al. MF-CFI: a fused evaluation index for camouflage patterns based on human visual perception[J]. Defence Technology, 2021, 17(5):1602-1608.
doi: 10.1016/j.dt.2020.08.007
|
[4] |
BI H B, ZHANG C, WANG K, et al. Rethinking camouflaged object detection: models and datasets[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(9):5708-5724.
|
[5] |
MONDAL A. Camouflaged object detection and tracking:a survey[J]. International Journal of Image & Graphics, 2020, 20(4):2050028.
|
[6] |
XUE F, CUI G Y, HONG R C, et al. Camouflage texture evaluation using a saliency map[J]. Multimedia Systems, 2015, 21(2): 165-175.
|
[7] |
ZHANG X, ZHU C, WANG S, et al. A Bayesian approach to camouflaged moving object detection[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2017, 27(9): 2001-2013.
|
[8] |
JR H, CUTHILL I C, BADDELEY R, et al. Camouflage, detection and identification of moving targets[J]. Proceedings of the Royal Society B-Biological Sciences, 2013, 280(1758): 20130064.
|
[9] |
FAN D P, JI G P, SUN G, et al. Camouflaged object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York,NY, US:IEEE,2020: 2777-2787.
|
[10] |
WANG K, BI H B, ZHANG Y, et al. D2C-net: a dual-branch, dual-guidance and cross-refine network for camouflaged object detection[J]. IEEE Transactions on Industrial Electronics, 2021, 69(5): 5364-5374.
|
[11] |
ZHOU T, ZHOU Y, GONG C, et al. Feature aggregation and propagation network for camouflaged object detection[J]. IEEE Transactions on Image Processing, 2022, 31:7036-7047.
doi: 10.1109/TIP.2022.3217695
pmid: 36331642
|
[12] |
MEI H Y, JI G P, WEI Z Q, et al. Camouflaged object segmentation with distraction mining[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, US: IEEE, 2021: 8772-8781.
|
[13] |
ZHANG J C, SHAO J B, CHEN J L, et al. Polarization image fusion with self-learned fusion strategy[J]. Pattern Recognition, 2021, 118: 108045.
|
[14] |
TANG F Z, GUI L Q, LIU J B, et al. Metal target detection method using passive millimeter-wave polarimetric imagery[J]. Optics Express, 2020, 28(9):13336-13351.
doi: 10.1364/OE.390385
pmid: 32403811
|
[15] |
BLIN R, AINOUZ S, CANU S, et al. The PolarLITIS dataset: road scenes under fog[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(8):10753-10762.
|
[16] |
WANG H F, SHAN Y H, HAO T, et al. Vehicle-road environment perception under low-visibility condition based on polarization features via deep learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17873-17886.
|
[17] |
LIANG J A, WANG X, FANG Y J, et al. Water surface-clutter suppression method based on infrared polarization information[J]. Applied Optics, 2018, 57(16):4649-4658.
|
[18] |
ZHANG Y, ZHANG Y, ZHAO H J, et al. Improved atmospheric effects elimination method for pBRDF models of painted surfaces[J]. Optics Express, 2017, 25(14): 16458-16475.
doi: 10.1364/OE.25.016458
pmid: 28789150
|
[19] |
SHEN Y, LIN W F, WANG Z F, et al. Rapid detection of camouflaged artificial target based on polarization imaging and deep learning[J]. IEEE Photonics Journal, 2021, 13(4):1-9.
|
[20] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
pmid: 27295650
|
[21] |
GE Z, LIU S T, WANG F, et al. Yolox: exceeding yolo series in 2021:arXiv:2107.08430[R]. Ithaca,NY, US: Cornell Universit, 2021:2107.08430.
|
[22] |
BOCHKOVSKIY A, WANG C, LIAO H M. YOLOv4:optimal speed and accuracy of object detection: arXiv:2004.10934[R]. Ithaca,NY, US: Cornell Universit, 2020:2004.10934.
|
[23] |
WOO S Y, PARK J C, LEE J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018:3-19.
|
[24] |
SUN R, SUN X B, CHEN F, et al. Polarimetric imaging detection using a convolutional neural network with three-dimensional and two-dimensional convolutional layers[J]. Applied Optics, 2020, 59(1): 151-155.
|
[25] |
谭湘粤, 胡晓, 杨佳信, 等. 基于递进式特征增强聚合的伪装目标检测[J]. 计算机应用, 2022, 42(7):2192-2200.
doi: 10.11772/j.issn.1001-9081.2021060900
|
|
TAN X Y, HU X, YANG J X, et al. Camouflaged object detection based on progressive feature enhancement aggregation[J]. Journal of Computer Applications, 2022, 42(7): 2192-2200. (in Chinese)
doi: 10.11772/j.issn.1001-9081.2021060900
|
[26] |
TAN M X, PANG R M, LE Q V. Efficientdet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle, WA, US:IEEE, 2020:10781-10790.
|
[27] |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Yolov7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors:arXiv:2207.02696[R]. Ithaca,NY, US: Cornell Universit, 2022:2207.02696. 2022.
|