欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (9): 3191-3203.doi: 10.12382/bgxb.2023.0866

• • 上一篇    下一篇

基于脑机接口与人机闭环的远程脑控无人机系统

刘思宇1, 张德雨2, 明致远3, 刘梦真3, 刘紫玉1, 陈启明1, 张健1, 吴景龙1, 闫天翼1,*()   

  1. 1 北京理工大学 医学技术学院, 北京 100081
    2 北京航空航天大学杭州创新研究院, 浙江 杭州 310051
    3 北京理工大学 机电学院, 北京 100081
  • 收稿日期:2023-09-05 上线日期:2024-01-31
  • 通讯作者:
  • 基金资助:
    科技创新2030-重大项目(2022ZD0208500); 国家自然科学基金项目(U20A20191); 国家自然科学基金项目(62336002); 国家自然科学基金项目(82071912); 国家自然科学基金项目(12104049); 国家自然科学基金项目(82202291); 国家自然科学基金项目(62306035); 国家自然科学基金项目(62373056); 中国博士后科学基金项目(2023TQ0027)

Remote Brain-controlled Unmanned Aerial Vehicle System Based on Brain-machine Interface and Human-machine Closed Loop

LIU Siyu1, ZHANG Deyu2, MING Zhiyuan3, LIU Mengzhen3, LIU Ziyu1, CHEN Qiming1, ZHANG Jian1, WU Jinglong1, YAN Tianyi1,*()   

  1. 1 School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
    2 Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, Zhejiang, China
    3 School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2023-09-05 Online:2024-01-31

摘要:

随着现代军事战争的迅速演变,远程脑控无人机在实现战场信息获取、目标监视和战术部署方面扮演着愈发重要的角色。提出一种应用于远程脑控无人机的压缩感知控制范式和人机闭环控制算法,基于该控制范式及控制算法搭建面向军事应用场景的远程脑控无人机系统。在线实验结果表明:8名被试人员通过该脑控无人机系统进行导航任务,平均任务完成率为0.95,平均任务完成时间为100.46s,显著优于基于人机开环控制算法的脑控无人机系统;新提出的脑控无人机系统可以应用于军事场景下的战场侦察,大幅度提高作战人员的无人机远程控制能力,拓展作战人员的战场感知范围。

关键词: 脑控无人机, 脑机接口, 人机闭环, 压缩感知

Abstract:

With the rapid evolution of modern military warfare, the remote brain-controlled unmanned aerial vehicle (UAV) systems are playing an increasingly important role in battlefield information gathering, target surveillance, and tactical deployment. This research proposes a compressed sensing control paradigm and a human-machine closed-loop control algorithm for remote brain-controlled UAV. Based on this control paradigm and algorithm, a remote brain-controlled UAV system for military applications is constructed. Online experiments conducted in this study demonstrate that eight participants successfully completed the navigation tasks using the brain-controlled UAV system based on the compressed sensing control paradigm and human-machine closed-loop control algorithm. The average task completion rate of the proposed brain-controlled UAV system is 0.95, and its average task completion time is 100.46s, which significantly outperformes the brain-controlled UAV system based on human-machine open-loop control algorithms. In the future, the proposed brain-controlled UAV system can be used for battlefield reconnaissance in military scenarios, significantly enhancing the remote-control capabilities of military personnel and expanding their battlefield awareness.

Key words: brain-controlled unmanned aerial vehicle, brain-machine interface, human-machine closed-loop, compressed sensing

中图分类号: