欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (8): 2761-2773.doi: 10.12382/bgxb.2023.0611

• • 上一篇    下一篇

基于RRT-Dubins的无人机航迹优化方法

王东振1,*(), 张岳1, 赵宇1, 黄大庆2   

  1. 1 扬州大学 信息工程学院, 江苏 扬州 225000
    2 南京航空航天大学 无人机研究院, 江苏 南京 210016
  • 收稿日期:2023-06-26 上线日期:2024-01-19
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(62205283); 中国博士后科学基金项目(2022M712697); 江苏省科学技术厅青年项目(BK20230559)

A UAV Trajectory Optimization Method Based on RRT-Dubins

WANG Dongzhen1,*(), ZHANG Yue1, ZHAO Yu1, HUANG Daqing2   

  1. 1 College of Information Engineering, Yangzhou University, Yangzhou 225000, Jiangsu, China
    2 Research Institute of Unmanned Aircraft, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China
  • Received:2023-06-26 Online:2024-01-19

摘要:

针对多障碍物环境下考虑无人机(Unmanned Aerial Vehicle,UAV)始末位姿、转弯半径和航迹长度的1阶光滑约束的UAV航迹规划问题,提出一种基于快速搜索随机树(Rapidly-exploring Random Trees,RRT)算法和Dubins曲线以局部最优逼近全局最优的UAV航迹优化方法。利用RRT算法和基于贪心算法的剪枝优化方法,在二维任务空间中规划出满足避障要求的可行离散航路点。采用多条Dubins曲线平滑连接航路点,根据UAV始末位姿确定首尾曲线端点,基于UAV性能、障碍物和飞行参数的约束关系,建立多约束的航迹优化数学模型。通过粒子群优化算法确定曲线类型,同时优化曲线连接处位姿和曲线半径,获得最短航迹。仿真结果表明:所提方法得到的航迹与其他方法相比,在不同障碍物数量和始末位姿的多种场景中,平均长度缩短了11.48%,在避开障碍物的同时,满足UAV动力学约束。

关键词: 无人机航迹规划, 快速搜索随机树算法, Dubins曲线, 粒子群优化算法, 航迹优化

Abstract:

A unmanned aerial vehicle (UAV) trajectory optimization method based on the rapidly-exploring random trees (RRT) algorithm and Dubins curves is proposed to address the problem of UAV trajectory planning in multi-obstacle environments. The initial and final poses, turning radius, and trajectory length, and first-order smoothness constraint of UAV are considered in the trajectory planning. The RRT algorithm and a pruning optimization method based on a greedy algorithm are utilized to plan the feasible discrete waypoints that satisfy the obstacle avoidance requirements in a two-dimensional task space. Multiple Dubins curves are employed to smoothly connect the waypoints. A multi-constraint trajectory optimization mathematical model is established based on the UAV's initial and final poses, and the constraints related to the UAV's performance and obstacles. The particle swarm optimization (PSO) algorithm is employed to determine the curve types and optimize the poses at the curve connections and the curve radii, thereby obtaining the shortest trajectory. Simulated results demonstrate that the proposed method reduces the average trajectory length by 11.48% in various scenarios with different numbers of obstacles and varying initial and final positions, while satisfying the UAV's kinematic constraints and avoiding obstacles compared to other methods.

Key words: unmanned aerial vehicle trajectory planning, rapidly-exploring random trees algorithm, Dubins curve, particle swarm optimization algorithm, trajectory optimization

中图分类号: