欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (9): 3177-3190.doi: 10.12382/bgxb.2023.0914

• • 上一篇    下一篇

基于动态一致性联盟算法的异构无人机集群协同作战联盟组建

潘子双1, 苏析超2,*(), 韩维1, 柳文林1, 郁大照1, 汪节3   

  1. 1 海军航空大学 航空基础学院, 山东 烟台 264001
    2 海军航空大学 航空作战勤务学院, 山东 烟台 264001
    3 91475部队, 辽宁 葫芦岛 125100
  • 收稿日期:2023-09-11 上线日期:2023-12-11
  • 通讯作者:
    * 邮箱:
  • 基金资助:
    国家社科基金(军事学类)基金项目(2020-SKJJ-C-030)

Cooperative Combat Coalition Formation of Heterogeneous UAV Swarm Based on Dynamic Consensus-based Grouping Algorithm

PAN Zishuang1, SU Xichao2,*(), HAN Wei1, LIU Wenlin1, YU Dazhao1, WANG Jie3   

  1. 1 Aeronautical Foundation College, Naval Aviation University, Yantai 264001, Shandong, China
    2 Aeronautical Operations College, Naval Aviation University, Yantai 264001, Shandong, China
    3 Unit 91475 of PLA, Huludao 125100, Liaoning, China
  • Received:2023-09-11 Online:2023-12-11

摘要:

动态未知乃至对抗条件下的异构无人机集群协同作战联盟组建是无人机集群实际作战运用的重要一环。构建以动态一致性联盟算法(Dynamic Consensus-based Grouping Algorithm,DCBGA)为核心的无人机集群决策控制流程框架。为无人机集群设计通信受限条件的通信组网模型,并引入动态自适应机制,以有效应对高动态任务场景;基于“作战环”理论,对网络架构下的异构单元非线性作战效能聚合效果进行描述,并纳入全局效益函数,牵引异构无人机协同作战联盟组建;将联盟组建过程划分为目标选择、一致性和信息与状态更新三个阶段,采用动态一致性联盟算法支撑无人机集群自下而上完成各阶段的信息决策控制。仿真结果表明,新构建的算法体系可以有效推动异构无人机集群实现作战联盟组建,完成协同打击作战任务,具有较好的动态适应性及规模扩展性,在对抗环境下展现出良好的韧性。

关键词: 异构无人机集群, 联盟组建, 作战效能, 分布式, 一致性, 韧性

Abstract:

The formation of a heterogeneous unmanned aerial vehicle (UAV) swarm cooperative combat coalition under dynamic, unknown or contested conditions is a crucial aspect of practical UAV swarm operations. A decision control process framework for UAV swarm based on the dynamic consensus-based grouping algorithm (DCBGA) is constructed. A communication networking model with communication constraints is designed for UAV swarm, and a dynamic adaptive mechanism is introduced to effectively cope with high dynamic task scenarios. Based on the “operation loop” theory, the aggregation effect of non-linear combat effectiveness of heterogeneous units under the network architecture is described, and included in the global performance function to guide the formation of the heterogeneous UAV cooperative combat coalition. The coalition formation process is divided into three stages: target selection, consensus, and information and state update. The dynamic consensus-based grouping algorithm is used to support the UAV swarm in completing the information decision control of each stage from the bottom up. Simulated results show that the proposed algorithm system can effectively promote the heterogeneous UAV swarms to realize the formation of combat coalitions and complete the coordinated combat missions, demonstrating good dynamic adaptability and scalability, and exhibiting better resilience in contested environments.

Key words: heterogeneous unmanned aerial vehicle swarm, coalition formation, combat effectiveness, distributed framework, consensus, resilience

中图分类号: