欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

融合行为基元优化与博弈的轨迹跟踪控制方法

王博洋, 李欣萍, 宋俊杰, 关海杰, 刘海鸥, 陈慧岩   

  • 收稿日期:2024-07-11 修回日期:2025-04-10
  • 基金资助:
    国家自然科学基金(52302489)

A Trajectory Tracking Control Method Incorporating Behavior Primitive Optimization and Game Coordination

  • Received:2024-07-11 Revised:2025-04-10

摘要: 为解决以拟人化行为基元序列为期望轨迹的无人车轨迹跟踪控制问题,提出了一种行为基元离线优化与在线博弈协调相结合的轨迹跟踪控制方法。以从真实驾驶数据中直接提取出的行为基元库为根基,通过基于模型的非线性优化方法,生成满足车辆运动学特性约束的行为基元库;通过粒子群算法离线寻优得到行为基元库中各类别基元的最优控制参量,并采用多层感知机建立控制器最优参量与行为基元类别之间的映射关系;在对基元内控制参量进行优化的基础上,以在线博弈协调控制方法为核心,实现行为基元间的最优控制参量生成。试验结果表明,所提出的融合行为基元优化与博弈的控制方法,能够显著提升对行为基元序列的跟踪控制精度,并有效解决各独立行为基元间的稳定平滑过渡问题。

关键词: 行为基元, 轨迹跟踪控制, 粒子群优化, 微分博弈理论

Abstract: To solve the problem of unmanned vehicle trajectory tracking control with a sequence of human-like behavior primitives as the desired trajectory, a trajectory tracking control method combining offline optimization of behavior primitives and online game coordination is proposed. Based on the behavior primitive library extracted directly from real driving data, a model-based nonlinear optimization method is applied to generate a behavior primitive library that satisfies the constraints of vehicle kinematic properties. The optimal control parameters for each category of primitives in the behavior primitive library are obtained by offline optimization using the particle swarm algorithm, and a multilayer perceptual machine is applied to establish the mapping relationship between the optimal parameters of the controller and the categories of behavioral primitives. Based on the optimization of the control parameters within the primitives, the online game coordinated control method is used as the core to realize the optimal control parameter generation between the behavior primitives. The experimental results show that the proposed control method integrating behavior primitive optimization and gaming can significantly improve the tracking accuracy of the behavior primitive sequences and effectively solve the problem of stable and smooth transition between independent behavior primitives.

Key words: behavior primitive, trajectory tracking control, particle swarm optimization, differential game theory