兵工学报 ›› 2024, Vol. 45 ›› Issue (5): 1602-1612.doi: 10.12382/bgxb.2023.0743
收稿日期:
2023-08-11
上线日期:
2024-02-09
通讯作者:
基金资助:
LIU Fang1,2,*(), LI Shiwei3, LU Xi4, GUO Ce’an4
Received:
2023-08-11
Online:
2024-02-09
摘要:
为探索水下柱形装药结构、爆距等参数与水下柱形装药峰值超压的关系,将装药样本数据视为二维数据,建立粒子群优化(Particle Swarm Optimization, PSO)算法、一维卷积神经网络(1D Convolutional Neural Network,1DCNN)和极端梯度提升(Extreme Gradient Boosting, XGBoost)的水下柱形装药峰值超压融合预测算法。采用相关性分析与数据可视化方法,分析装药结构参数、爆距与峰值超压之间的关联关系。设计1DCNN深度网络挖掘不同长径比、爆距等参数与峰值超压之间的纵向时序关系。运用XGBoost算法寻找装药结构参数、爆距与峰值超压之间的横向非线性关系,提升小样本数据的预测精度。使用PSO算法优化1DCNN和XGBoost的超参数,获得最优算法结构。研究结果表明,在包含10种智能算法的对比实验中,PSO-CNN-XGBoost水下柱形装药峰值超压预测算法在精度、稳定性、拟合程度上均高于其他模型。
中图分类号:
刘芳, 李士伟, 卢熹, 郭策安. 基于PSO-CNN-XGBoost水下柱形装药峰值超压预测[J]. 兵工学报, 2024, 45(5): 1602-1612.
LIU Fang, LI Shiwei, LU Xi, GUO Ce’an. Prediction of Peak Overpressure of Underwater Cylindrical Charge Based on PSO-CNN-XGBoost[J]. Acta Armamentarii, 2024, 45(5): 1602-1612.
参数 | 数值 |
---|---|
ρ0/(g·cm-3) | 1.55 |
Q/(m·s-1) | 6930 |
pC-J/GPa | 21 |
A/GPa | 373.77 |
B/GPa | 3.747 |
R1 | 4.15 |
R2 | 0.9 |
ω | 0.35 |
E | 0.07 |
表1 仿真弹药TNT参数
Table 1 Parameters of simulation ammunition TNT
参数 | 数值 |
---|---|
ρ0/(g·cm-3) | 1.55 |
Q/(m·s-1) | 6930 |
pC-J/GPa | 21 |
A/GPa | 373.77 |
B/GPa | 3.747 |
R1 | 4.15 |
R2 | 0.9 |
ω | 0.35 |
E | 0.07 |
序号 | 长径比 | 长度/ mm | 直径/ mm | 爆距/ mm | 爆径比 | 峰值超压/ MPa |
---|---|---|---|---|---|---|
1 | 0.5 | 12.7 | 25.4 | 30 | 11.8 | 29.15 |
2 | 0.5 | 12.7 | 25.4 | 40 | 15.7 | 19.81 |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ | |
28 | 1 | 20.2 | 20.2 | 50 | 24.8 | 21.35 |
29 | 1 | 20.2 | 20.2 | 60 | 29.8 | 16.73 |
30 | 1 | 20.2 | 20.2 | 70 | 34.7 | 13.60 |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ | |
219 | 10 | 93.6 | 9.4 | 120 | 128.2 | 17.66 |
220 | 10 | 93.6 | 9.4 | 130 | 138.9 | 16.17 |
表2 水下柱形装药数据集
Table 2 Underwater cylindrical charge dataset
序号 | 长径比 | 长度/ mm | 直径/ mm | 爆距/ mm | 爆径比 | 峰值超压/ MPa |
---|---|---|---|---|---|---|
1 | 0.5 | 12.7 | 25.4 | 30 | 11.8 | 29.15 |
2 | 0.5 | 12.7 | 25.4 | 40 | 15.7 | 19.81 |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ | |
28 | 1 | 20.2 | 20.2 | 50 | 24.8 | 21.35 |
29 | 1 | 20.2 | 20.2 | 60 | 29.8 | 16.73 |
30 | 1 | 20.2 | 20.2 | 70 | 34.7 | 13.60 |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ | |
219 | 10 | 93.6 | 9.4 | 120 | 128.2 | 17.66 |
220 | 10 | 93.6 | 9.4 | 130 | 138.9 | 16.17 |
爆距/ cm | 仿真/ MPa | 经验公式[ MPa | 实弹实验[ MPa | 误差1/ % | 误差2/ % |
---|---|---|---|---|---|
50 | 21.35 | 19.71 | 19.97 | 8.3 | 6.9 |
60 | 16.73 | 15.71 | 16.45 | 6.5 | 1.7 |
70 | 13.60 | 12.59 | 13.95 | 8.0 | 2.5 |
表3 长径比1∶1的不同爆距装药峰值超压误差
Table 3 Peak overpressure errors of charge with aspect ratio of 1∶1 and different blast distances
爆距/ cm | 仿真/ MPa | 经验公式[ MPa | 实弹实验[ MPa | 误差1/ % | 误差2/ % |
---|---|---|---|---|---|
50 | 21.35 | 19.71 | 19.97 | 8.3 | 6.9 |
60 | 16.73 | 15.71 | 16.45 | 6.5 | 1.7 |
70 | 13.60 | 12.59 | 13.95 | 8.0 | 2.5 |
图11 基于PSO-CNN-XGBoost水下柱形装药峰值超压预测算法流程图
Fig.11 Flowchart of peak overpressure prediction algorithm of underwater cylindrical charge based on PSO-CNN-XGBoost
序号 | 长径比 | 长度 | 直径 | 爆距 | 爆径比 | 峰值超压 |
---|---|---|---|---|---|---|
1 | 0 | 0 | 1 | 0 | 0 | 0.2728 |
2 | 0 | 0 | 1 | 0.1 | 0.0309 | 0.1724 |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ | ︙ |
219 | 1 | 1 | 0 | 0.8 | 0.8318 | 0.1672 |
220 | 1 | 1 | 0 | 0.9 | 0.9159 | 0.1493 |
表4 归一化后的数据集
Table 4 Normalized dataset
序号 | 长径比 | 长度 | 直径 | 爆距 | 爆径比 | 峰值超压 |
---|---|---|---|---|---|---|
1 | 0 | 0 | 1 | 0 | 0 | 0.2728 |
2 | 0 | 0 | 1 | 0.1 | 0.0309 | 0.1724 |
︙ | ︙ | ︙ | ︙ | ︙ | ︙ | ︙ |
219 | 1 | 1 | 0 | 0.8 | 0.8318 | 0.1672 |
220 | 1 | 1 | 0 | 0.9 | 0.9159 | 0.1493 |
算法 | RMSE/MPa | MAE/MPa | R2 | t/s |
---|---|---|---|---|
BP | 3.83 | 2.65 | 0.9512 | 0.0836 |
ACO-BP | 1.75 | 1.09 | 0.9901 | 0.0836 |
GA-BP | 1.36 | 0.82 | 0.9940 | 0.0836 |
PSO-BP | 1.67 | 1.05 | 0.9909 | 0.0968 |
XGBoost | 2.19 | 0.92 | 0.9844 | 0.0176 |
ACO-XGBoost | 1.59 | 0.77 | 0.9918 | 0.0132 |
GA-XGBoost | 1.89 | 0.91 | 0.9884 | 0.0176 |
PSO- XGBoost | 1.53 | 0.69 | 0.9923 | 0.0132 |
CNN | 1.20 | 0.71 | 0.9952 | 0.1496 |
PSO-CNN-XGBoost | 0.91 | 0.60 | 0.9978 | 0.1056 |
表5 实验结果对比
Table 5 Comparison of experimental results
算法 | RMSE/MPa | MAE/MPa | R2 | t/s |
---|---|---|---|---|
BP | 3.83 | 2.65 | 0.9512 | 0.0836 |
ACO-BP | 1.75 | 1.09 | 0.9901 | 0.0836 |
GA-BP | 1.36 | 0.82 | 0.9940 | 0.0836 |
PSO-BP | 1.67 | 1.05 | 0.9909 | 0.0968 |
XGBoost | 2.19 | 0.92 | 0.9844 | 0.0176 |
ACO-XGBoost | 1.59 | 0.77 | 0.9918 | 0.0132 |
GA-XGBoost | 1.89 | 0.91 | 0.9884 | 0.0176 |
PSO- XGBoost | 1.53 | 0.69 | 0.9923 | 0.0132 |
CNN | 1.20 | 0.71 | 0.9952 | 0.1496 |
PSO-CNN-XGBoost | 0.91 | 0.60 | 0.9978 | 0.1056 |
序号 | 长径 比 | 爆距/ cm | 直径/ mm | 长度/ mm | 爆径 比 | 仿真值/ MPa | 预测值/ MPa |
---|---|---|---|---|---|---|---|
1 | 0.50 | 30 | 25.4 | 12.7 | 11.8 | 29.15 | 32.05 |
2 | 0.50 | 70 | 25.4 | 12.7 | 27.6 | 9.52 | 10.59 |
3 | 0.75 | 30 | 22.2 | 16.6 | 13.5 | 38.32 | 37.37 |
4 | 0.75 | 80 | 22.2 | 16.6 | 36 | 10.24 | 9.99 |
5 | 0.75 | 100 | 22.2 | 16.6 | 45.1 | 7.65 | 7.90 |
6 | 0.75 | 110 | 22.2 | 16.6 | 49.6 | 6.73 | 6.88 |
7 | 1.00 | 90 | 20.2 | 20.2 | 44.6 | 9.93 | 9.96 |
8 | 1.00 | 100 | 20.2 | 20.2 | 49.6 | 8.62 | 9.16 |
9 | 1.00 | 120 | 20.2 | 20.2 | 59.5 | 6.79 | 6.91 |
10 | 1.25 | 30 | 18.7 | 23.4 | 16 | 48.46 | 48.91 |
11 | 1.25 | 40 | 18.7 | 23.4 | 21.4 | 32.46 | 33.24 |
12 | 1.25 | 50 | 18.7 | 23.4 | 26.7 | 23.86 | 23.40 |
13 | 1.25 | 80 | 18.7 | 23.4 | 42.7 | 12.73 | 12.78 |
14 | 1.25 | 90 | 18.7 | 23.4 | 48.1 | 10.97 | 10.78 |
15 | 1.50 | 30 | 17.6 | 26.4 | 17 | 55.28 | 54.69 |
16 | 1.75 | 60 | 16.7 | 29.3 | 35.9 | 22.77 | 22.70 |
17 | 1.75 | 100 | 16.7 | 29.3 | 59.8 | 11.4 | 11.35 |
18 | 2.00 | 40 | 16 | 32 | 25 | 42.62 | 42.25 |
19 | 2.00 | 100 | 16 | 32 | 62.5 | 12.25 | 12.04 |
20 | 2.25 | 40 | 15.4 | 34.6 | 26 | 44.29 | 45.19 |
21 | 2.25 | 110 | 15.4 | 34.6 | 71.5 | 11.18 | 11.30 |
22 | 2.60 | 30 | 14.7 | 38.1 | 20.5 | 72.61 | 72.76 |
23 | 2.60 | 40 | 14.7 | 38.1 | 27.3 | 47.92 | 48.42 |
24 | 2.60 | 60 | 14.7 | 38.1 | 40.9 | 27.45 | 27.41 |
25 | 2.60 | 130 | 14.7 | 38.1 | 88.6 | 9.66 | 9.91 |
26 | 2.75 | 60 | 14.4 | 39.6 | 41.7 | 28.64 | 28.51 |
27 | 2.75 | 90 | 14.4 | 39.6 | 62.5 | 16.49 | 16.44 |
28 | 2.75 | 120 | 14.4 | 39.6 | 83.4 | 11.23 | 11.06 |
29 | 3.00 | 100 | 14 | 41.9 | 71.5 | 14.95 | 14.96 |
30 | 3.50 | 90 | 13.3 | 46.5 | 67.8 | 19.04 | 18.92 |
31 | 3.75 | 100 | 13 | 48.7 | 77 | 17 | 16.78 |
32 | 4.00 | 120 | 12.7 | 50.8 | 94.5 | 13.45 | 13.48 |
33 | 4.00 | 130 | 12.7 | 50.8 | 102.3 | 12.07 | 12.28 |
34 | 4.25 | 40 | 12.4 | 52.9 | 32.1 | 58.21 | 60.50 |
35 | 4.50 | 60 | 12.2 | 55 | 49.1 | 35.62 | 36.22 |
36 | 4.5 | 70 | 12.2 | 55 | 57.3 | 28.87 | 29.34 |
37 | 4.5 | 100 | 12.2 | 55 | 81.9 | 18.03 | 18.32 |
38 | 4.5 | 130 | 12.2 | 55 | 106.4 | 12.78 | 13.11 |
39 | 4.75 | 60 | 12 | 57 | 50 | 36.54 | 37.03 |
40 | 4.75 | 130 | 12 | 57 | 108.4 | 13.22 | 13.27 |
41 | 5 | 40 | 11.8 | 59 | 33.9 | 65.54 | 63.50 |
42 | 5 | 120 | 11.8 | 59 | 101.8 | 15.43 | 15.18 |
43 | 10 | 70 | 9.4 | 93.6 | 74.8 | 31.63 | 30.58 |
44 | 10 | 90 | 9.4 | 93.6 | 96.2 | 24.16 | 24.00 |
表6 44个工况预测结果
Table 6 Predicted results of 44 working conditions
序号 | 长径 比 | 爆距/ cm | 直径/ mm | 长度/ mm | 爆径 比 | 仿真值/ MPa | 预测值/ MPa |
---|---|---|---|---|---|---|---|
1 | 0.50 | 30 | 25.4 | 12.7 | 11.8 | 29.15 | 32.05 |
2 | 0.50 | 70 | 25.4 | 12.7 | 27.6 | 9.52 | 10.59 |
3 | 0.75 | 30 | 22.2 | 16.6 | 13.5 | 38.32 | 37.37 |
4 | 0.75 | 80 | 22.2 | 16.6 | 36 | 10.24 | 9.99 |
5 | 0.75 | 100 | 22.2 | 16.6 | 45.1 | 7.65 | 7.90 |
6 | 0.75 | 110 | 22.2 | 16.6 | 49.6 | 6.73 | 6.88 |
7 | 1.00 | 90 | 20.2 | 20.2 | 44.6 | 9.93 | 9.96 |
8 | 1.00 | 100 | 20.2 | 20.2 | 49.6 | 8.62 | 9.16 |
9 | 1.00 | 120 | 20.2 | 20.2 | 59.5 | 6.79 | 6.91 |
10 | 1.25 | 30 | 18.7 | 23.4 | 16 | 48.46 | 48.91 |
11 | 1.25 | 40 | 18.7 | 23.4 | 21.4 | 32.46 | 33.24 |
12 | 1.25 | 50 | 18.7 | 23.4 | 26.7 | 23.86 | 23.40 |
13 | 1.25 | 80 | 18.7 | 23.4 | 42.7 | 12.73 | 12.78 |
14 | 1.25 | 90 | 18.7 | 23.4 | 48.1 | 10.97 | 10.78 |
15 | 1.50 | 30 | 17.6 | 26.4 | 17 | 55.28 | 54.69 |
16 | 1.75 | 60 | 16.7 | 29.3 | 35.9 | 22.77 | 22.70 |
17 | 1.75 | 100 | 16.7 | 29.3 | 59.8 | 11.4 | 11.35 |
18 | 2.00 | 40 | 16 | 32 | 25 | 42.62 | 42.25 |
19 | 2.00 | 100 | 16 | 32 | 62.5 | 12.25 | 12.04 |
20 | 2.25 | 40 | 15.4 | 34.6 | 26 | 44.29 | 45.19 |
21 | 2.25 | 110 | 15.4 | 34.6 | 71.5 | 11.18 | 11.30 |
22 | 2.60 | 30 | 14.7 | 38.1 | 20.5 | 72.61 | 72.76 |
23 | 2.60 | 40 | 14.7 | 38.1 | 27.3 | 47.92 | 48.42 |
24 | 2.60 | 60 | 14.7 | 38.1 | 40.9 | 27.45 | 27.41 |
25 | 2.60 | 130 | 14.7 | 38.1 | 88.6 | 9.66 | 9.91 |
26 | 2.75 | 60 | 14.4 | 39.6 | 41.7 | 28.64 | 28.51 |
27 | 2.75 | 90 | 14.4 | 39.6 | 62.5 | 16.49 | 16.44 |
28 | 2.75 | 120 | 14.4 | 39.6 | 83.4 | 11.23 | 11.06 |
29 | 3.00 | 100 | 14 | 41.9 | 71.5 | 14.95 | 14.96 |
30 | 3.50 | 90 | 13.3 | 46.5 | 67.8 | 19.04 | 18.92 |
31 | 3.75 | 100 | 13 | 48.7 | 77 | 17 | 16.78 |
32 | 4.00 | 120 | 12.7 | 50.8 | 94.5 | 13.45 | 13.48 |
33 | 4.00 | 130 | 12.7 | 50.8 | 102.3 | 12.07 | 12.28 |
34 | 4.25 | 40 | 12.4 | 52.9 | 32.1 | 58.21 | 60.50 |
35 | 4.50 | 60 | 12.2 | 55 | 49.1 | 35.62 | 36.22 |
36 | 4.5 | 70 | 12.2 | 55 | 57.3 | 28.87 | 29.34 |
37 | 4.5 | 100 | 12.2 | 55 | 81.9 | 18.03 | 18.32 |
38 | 4.5 | 130 | 12.2 | 55 | 106.4 | 12.78 | 13.11 |
39 | 4.75 | 60 | 12 | 57 | 50 | 36.54 | 37.03 |
40 | 4.75 | 130 | 12 | 57 | 108.4 | 13.22 | 13.27 |
41 | 5 | 40 | 11.8 | 59 | 33.9 | 65.54 | 63.50 |
42 | 5 | 120 | 11.8 | 59 | 101.8 | 15.43 | 15.18 |
43 | 10 | 70 | 9.4 | 93.6 | 74.8 | 31.63 | 30.58 |
44 | 10 | 90 | 9.4 | 93.6 | 96.2 | 24.16 | 24.00 |
[1] |
聂源, 蒋建伟, 门建兵. 考虑环境温、湿度的球形装药爆炸冲击波参数计算模型[J]. 爆炸与冲击, 2018, 38(4):735-742.
|
|
|
[2] |
王树山, 梁策, 高源, 等. 深水爆炸二次压力波超压峰值的工程模型[J]. 兵工学报, 2022, 43(10):2508-2516.
|
doi: 10.12382/bgxb.2021.0560 |
|
[3] |
徐豫新, 蔡子雷, 吴巍, 等. 药毁伤效能评估技术研究现状与发展趋势[J]. 北京理工大学学报, 2021, 41(6):569-578.
|
|
|
[4] |
杨秉妍, 范瑞军, 江自生, 等. 活性元对低附带毁伤弹药的近场超压增强效应[J]. 高压物理学报, 2022, 36(6):164-172.
|
|
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
张之凡, 李海龙, 张桂勇, 等. 聚能装药水下爆炸冲击波和侵彻体载荷作用时序研究[J]. 爆炸与冲击, 2023, 43(10):3-14.
|
|
|
[12] |
黄洪, 卢熹, 王健. 柱形装药水下爆炸近场冲击波数值仿真[J]. 水下无人系统学报, 2021, 29(4):471-476.
|
|
|
[13] |
马腾, 王金相, 刘亮涛, 等. 不同长径比柱形装药水下爆炸冲击波演化规律[J]. 振动与冲击, 2022, 41(8):149-157,222.
|
|
|
[14] |
|
[15] |
裘镓荣, 曾鹏飞, 邵伟平, 等. 基于PSO-LSSVM弹药装配质量预测方法[J]. 兵工学报, 2022, 43(9):2379-2387.
|
doi: 10.12382/bgxb.2021.0867 |
|
[16] |
|
[17] |
李广宁, 史宪铭, 陈磊, 等. 基于LSTM神经网络的弹药消耗预测[J]. 火力与指挥控制, 2022, 47(6):75-80.
|
|
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
邓青, 薛青, 罗佳. 基于支持向量机的坦克驾驶模拟训练结果分析[J]. 兵工学报, 2019, 40(9):1953-1960.
doi: 10.3969/j.issn.1000-1093.2019.09.021 |
doi: 10.3969/j.issn.1000-1093.2019.09.021 |
[1] | 李欢欢, 刘辉, 盖江涛, 李训明. 基于粒子群优化算法PID参数优化的双电机耦合驱动履带车辆转向控制[J]. 兵工学报, 2024, 45(3): 916-924. |
[2] | 王磊, 徐超, 李淼, 赵慧武. 多飞行器协同任务分配的改进粒子群优化算法[J]. 兵工学报, 2023, 44(8): 2224-2232. |
[3] | 范博洋, 赵高鹏, 薄煜明, 吴祥. 多目标空地异构无人系统协同任务分配方法[J]. 兵工学报, 2023, 44(6): 1564-1575. |
[4] | 陈美杉, 刘赢, 曾维贵, 钱坤. 空射诱饵弹干扰资源动态分配策略[J]. 兵工学报, 2023, 44(5): 1443-1455. |
[5] | 卢佳兴, 刘海鸥, 关海杰, 李德润, 陈慧岩, 刘龙龙. 基于双参数自适应优化的无人履带车辆轨迹跟踪控制[J]. 兵工学报, 2023, 44(4): 960-971. |
[6] | 张轶凡, 刘亮涛, 王金相, 李恒, 唐奎. 水下爆炸冲击波和气泡载荷对典型圆柱壳结构的毁伤特性[J]. 兵工学报, 2023, 44(2): 345-359. |
[7] | 周孝添, 任宏斌, 苏波, 齐志权, 汪洋. 基于微分平坦的分层轨迹规划算法[J]. 兵工学报, 2023, 44(2): 394-405. |
[8] | 张渊博, 项昌乐, 王伟达, 陈泳丹. 基于粒子群优化-蚁群融合算法的分布式电驱动车辆模型预测转矩协调控制策略[J]. 兵工学报, 2023, 44(11): 3253-3258. |
[9] | 周铖, 罗杨, 魏江, 曹宏瑞, 兰海, 张万昊. 履带车辆制动器扭振信号瞬时频率特征提取方法研究[J]. 兵工学报, 2023, 44(1): 316-324. |
[10] | 唐泽月, 刘海鸥, 薛明轩, 陈慧岩, 龚小杰, 陶俊峰. 基于MPC-MFAC的双侧独立电驱动无人履带车辆轨迹跟踪控制[J]. 兵工学报, 2023, 44(1): 129-139. |
[11] | 郭志明, 王迪, 庞婷, 李娟, 赵丹, 杨建新. 面向装备体系联合检验的指数分布定时截尾方案优化研究[J]. 兵工学报, 2022, 43(S1): 203-207. |
[12] | 陈军, 张岳, 陈晓威, 佟龑. 基于模糊灰色认知图的复杂战场智能态势感知建模方法[J]. 兵工学报, 2022, 43(5): 1093-1106. |
[13] | 赵文辉, 孙晓恒, 张伟东, 郑鹏, 杨帆. 四旋翼飞行器齿轮箱-支臂组件动态特性分析[J]. 兵工学报, 2022, 43(5): 1175-1184. |
[14] | 许晓东, 唐圣金, 谢建, 于传强, 王凤飞, 韩洋洋. 随机退化应力作用下设备剩余寿命预测方法[J]. 兵工学报, 2022, 43(3): 712-719. |
[15] | 田恒, 许荣滨, 姜艳红, 张文虎, 邓四二. 基于离散粒子群优化算法的多值属性系统故障诊断策略[J]. 兵工学报, 2022, 43(12): 3240-3246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||