[1] |
高强, 袁东, 刘春光, 等. 车载综合电力系统大信号失稳预测[J]. 兵器装备工程学报, 2020, 41(12): 143-148.
|
|
GAO Q, YUAN D, LIU C G, et al. Large-signal instability prediction of vehicular integrated power system[J]. Journal of Ordnance Equipment Engineering, 2020, 41(12): 143-148. (in Chinese)
|
[2] |
KUMAR S, SAKET R K, DHEER D K, et al. Reliability enhancement of electrical power system including impacts of renewable energy sources: a comprehensive review[J]. IET Generation, Transmission & Distribution, 2020, 14(10): 1799-1815.
|
[3] |
白华, 刘春光, 张运银, 等. 新型车载综合电力系统拓扑结构研究[J]. 价值工程, 2018, 37(24):136-137.
|
|
BAI H, LIU C G, ZHANG Y Y, et al. Research on topological structures of new integrated power system of electric drive vehicle[J]. Value Engineering, 2018, 37(24): 136-137. (in Chinese)
|
[4] |
李嘉麒, 魏曙光, 廖自力, 等. 陆战平台全电化关键技术发展综述[J]. 兵工学报, 2021, 42(10): 2049-2059.
doi: 10.3969/j.issn.1000-1093.2021.10.001
|
|
LI J L, WEI S G, LIAO Z L, et al. Review on the key technologies and development of all-electric land warfare platform[J]. Acta Armamentarii, 2021, 42(10): 2049-2059. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2021.10.001
|
[5] |
袁东, 魏曙光, 马晓军. 装甲车辆供电系统研究现状与发展趋势[J]. 装甲兵工程学院学报, 2016, 30(6): 68-74.
|
|
YUAN D, WEI S G, MA X J. Research status and development trend of power supply system for armored vehicle[J]. Journal of Academy of Armored Force Engineering, 2016, 30(6): 68-74. (in Chinese)
|
[6] |
马晓军, 徐浩轩, 刘春光. 串联式混合动力车辆发电机组协调控制策略[J]. 兵工学报, 2021, 42(10): 2075-2081.
doi: 10.3969/j.issn.1000-1093.2021.10.003
|
|
MA X J, XU H X, LIU C G. Coordinated control strategy of generator sets of series hybrid electric vehicles[J]. Acta Armamentarii, 2021, 42(10): 2075-2081. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2021.10.003
|
[7] |
刘春光, 徐浩轩, 马晓军. 基于复合控制的发电机组协调控制方法研究[J]. 兵器装备工程学报, 2021, 42(4): 188-192.
|
|
LIU C G, XU H X, MA X J. Research on coordinated control method of generator set based on compound control strategy[J]. Journal of Ordnance Equipment Engineering, 2021, 42(4): 188-192. (in Chinese)
|
[8] |
LIU H Y, YAO Y M, WANG J, et al. A control architecture to coordinate energy management with trajectory tracking control for fuel cell/battery hybrid unmanned aerial vehicles[J]. International Journal of Hydrogen Energy, 2022, 47(34): 15236-15253.
|
[9] |
DONG P, ZHAO J W, LIU X W, et al. Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: development stages, challenges, and future trends[J]. Renewable and Sustainable Energy Reviews, 2022, 170: 112947.
|
[10] |
CHEN Z, WU S M, SHEN S Q, et al. Co-optimization of velocity planning and energy management for autonomous plug-in hybrid electric vehicles in urban driving scenarios[J]. Energy, 2023, 263: 126060.
|
[11] |
HAN X F, HE H W, WU J D, et al. Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle[J]. Applied Energy, 2019, 254: 113708.
|
[12] |
ZHANG L J, YE X M, XIA X H, et al. A real-time energy management and speed controller for an electric vehicle powered by a hybrid energy storage system[J]. IEEE Transactions on Industrial Informatics, 2020, 16(10): 6272-6280.
|
[13] |
LIU T, TAN W H, TANG X L, et al. Driving conditions-driven energy management strategies for hybrid electric vehicles: a review[J]. Renewable and Sustainable Energy Reviews, 2021, 151: 111521.
|
[14] |
李光华, 王智, 何润敏. 基于大数据的电力系统车辆智慧管理[J]. 西南民族大学学报(自然科学版), 2020, 46(2): 167-171.
|
|
LI G H, WANG Z, HE R M. Intellectual vehicle management for the electricity system based on big data[J]. Journal of Southwest University for Nationalities (Natrual Science Edition), 2020, 46(2): 167-171. (in Chinese)
|
[15] |
BOZALAKOV D V, LAVEYNE J, DESMET J, et al. Overvoltage and voltage unbalance mitigation in areas with high penetration of renewable energy resources by using the modified three-phase damping control strategy[J]. Electric Power Systems Research, 2019, 168: 283-294.
|
[16] |
陈超洋, 周勇, 池明, 等. 基于复杂网络理论的大电网脆弱性研究综述[J]. 控制与决策, 2022, 37(4): 782-798.
|
|
CHEN C Y, ZHOU Y, CHI M, et al. Review of large power grid vulnerability based on complex network theory[J]. Control and Decision, 2022, 37(4): 782-798. (in Chinese)
|
[17] |
GUO L X, ZHANG X D, ZOU Y, et al. Co-optimization strategy of unmanned hybrid electric tracked vehicle combining eco-driving and simultaneous energy management[J]. Energy, 2022, 246: 123309.
|
[18] |
REZAEI H, ABDOLLAHI S E, ABDOLLAHI S, et al. Energy management strategies of battery-ultracapacitor hybrid storage systems for electric vehicles: review, challenges, and future trends[J]. Journal of Energy Storage, 2022, 53: 105045.
|
[19] |
罗金满, 刘丽媛, 刘飘, 等. 考虑源网荷储协调的主动配电网优化调度方法研究[J]. 电力系统保护与控制, 2022, 50(1): 167-173.
|
|
LUO J M, LIU L Y, LIU P, et al. An optimal scheduling method for active distribution network considering source network load storage coordination[J]. Power System Protection and Control, 2022, 50(1): 167-173. (in Chinese)
|
[20] |
YANG Z C, YANG F, LIAO X B, et al. Two stage affinely adjustable robust optimal scheduling for AC/DC hybrid distribution network based on source-grid-load-storage coordination[J]. Energy Reports, 2022, 8: 15686-15701.
|
[21] |
徐浩轩, 马晓军, 刘春光. 混合动力装甲车直流微电网大信号稳定性分析[J]. 兵工学报, 2023, 44(1): 108-116.
doi: 10.12382/bgxb.2022.0472
|
|
XU H X, MA X J, LIU C G. Large-signal stability of on-board DC microgrids for hybrid electric armored vehicles[J]. Acta Armamentarii, 2023, 44(1): 108-116. (in Chinese)
doi: 10.12382/bgxb.2022.0472
|
[22] |
魏曙光, 刘健, 可荣硕, 等. 装甲车辆串联型混合动力方案设计与分析[J]. 电气传动, 2020, 50(3):73-79.
|
|
WEI S G, LIU J, KE R S, et al. Design and analysis of series hybrid power schemes for armed vehicle[J]. Electric Drive, 2020, 50(3): 73-79. (in Chinese)
|
[23] |
HUANG T, GAO S C, XIE L. A neural Lyapunov approach to transient stability assessment of power electronics-interfaced networked microgrids[J]. IEEE Transactions on Smart Grid, 2021, 13(1): 106-118.
|
[24] |
ZHANG Z F, YANG X Y, ZHAO S W, et al. Large-signal stability analysis of islanded DC microgrids with multiple types of loads[J]. International Journal of Electrical Power & Energy Systems, 2022, 143: 108450.
|
[25] |
XIE W Q, HAN M X, CAO W Y, et al. System-level large-signal stability analysis of droop-controlled DC microgrids[J]. IEEE Transactions on Power Electronics, 2020, 36(4): 4224-4236.
|
[26] |
SAN G C, ZHANG W L, GUO X Q, et al. Large-disturbance stability for power-converter-dominated microgrid: a review[J]. Renewable and Sustainable Energy Reviews, 2020, 127: 109859.
|
[27] |
BRIGGS R W, GOLDBERG J H. Battlefield recognition of armored vehicles[J]. Human factors, 1995, 37(3): 596-610.
|
[28] |
ZHANG P, YAN F W, DU C Q. A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 88-104.
|
[29] |
LARSSON V, JOHANNESSON L, EGARDT B. Analytic solutions to the dynamic programming subproblem in hybrid vehicle energy management[J]. IEEE Transactions on Vehicular Technology, 2015, 64(4):1458-1467.
|
[30] |
CAIRANO S D, BERNARDINI D, BEMPORAD A, et al. Stochastic MPC with learning for driver-predictive vehicle control and its application to HEV energy management[J]. IEEE Transactions on Control Systems Technology, 2014, 22(3): 1018-1031.
|
[31] |
YU K J, YANG H Z, TAN X G, et al. Model predictive control for hybrid electric vehicle platooning using slope information[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7): 1894-1909.
|
[32] |
PANIGRAHI S P, PANIGRAHI B K, SAMANTA C. Genetic-based bacteria foraging to optimize energy management of hybrid electric vehicles[J]. IET Electrical Systems in Transportation, 2014, 4(3): 53-61.
|
[33] |
CHENG Y H, LAI C M. Control strategy optimization for parallel hybrid electric vehicles using a memetic algorithm[J]. Energies, 2017, 10(3): 305-326.
|
[34] |
HAN J, KUM D, PARK Y. Synthesis of predictive equivalent consumption minimization strategy for hybrid electric vehicles based on closed-form solution of optimal equivalence factor[J]. IEEE Transactions on Vehicular Technology, 2017, 66(7): 5604-5616.
|
[35] |
DEXTREIT C, KOLMANOVSKY I V. Game theory controller for hybrid electric vehicles[J]. IEEE Transactions on Control Systems Technology, 2014, 22(2): 652-663.
|
[36] |
CHINDAMO D, GADOLA M, ECONOMOU J T. A neurofuzzy-controlled power management strategy for a series hybrid electric vehicle[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2014, 228(9):1034-1050.
|
[37] |
SUN C, HU X S, MOURA S J, et al. Velocity predictors for predictive energy management in hybrid electric vehicles[J]. IEEE Transactions on Control Systems Technology, 2015, 23(3): 1197-1204.
|
[38] |
ZHOU J H, XUE S W, XUE Y, et al. A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning[J]. Energy, 2021, 224: 120118.
|
[39] |
WANG T H, LI Q, WANG X T, et al. An optimized energy management strategy for fuel cell hybrid power system based on maximum efficiency range identification[J]. Journal of Power Sources, 2020, 445: 227333.
|
[40] |
NARANJE V, JAVED H, ANJUM S, et al. Failure modes and effects analysis ( FMEA) for electric converted vehicle[C]// Proceedings of the 2023 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE). Dubai, United Arab Emirates: IEEE, 2023: 444-449.
|
[41] |
OSHNOEI A, KHERADMANDI M, MUYEEN S M, et al. Disturbance observer and tube-based model predictive controlled electric vehicles for frequency regulation of an isolated power grid[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 4351-4362.
|
[42] |
TANG L, RIZZONI G, ONORI S. Energy management strategy for HEVs including battery life optimization[J]. IEEE Transactions on Transportation Electrification, 2015, 1(3): 211-222.
|
[43] |
胡晓松, 陈科坪, 唐小林, 等. 基于机器学习速度预测的并联混合动力车辆能量管理研究[J]. 机械工程学报, 2020, 56(16): 181-192.
doi: 10.3901/JME.2020.16.181
|
|
HU X S, CHEN K P, TANG X L, et al. Machine learning velocity prediction-based energy management of parallel hybrid electric vehicle[J]. Journal of Mechanical Engineering, 2020, 56(16): 181-192. (in Chinese)
doi: 10.3901/JME.2020.16.181
|
[44] |
李军求, 刘吉威, 朱超峰. 基于时变底盘构型的混动车辆能量管理研究[J]. 汽车工程, 2022, 44(12): 1866-1876.
|
|
LI J Q, LIU J W, ZHU C F. Research on energy management of hybrid electric vehicle based on time-varying chassis configuration[J]. Automotive Engineering, 2022, 44(12): 1866-1876. (in Chinese)
|
[45] |
SAITEJA P, ASHOK B. Critical review on structural architecture, energy control strategies and development process towards optimal energy management in hybrid vehicles[J]. Renewable and Sustainable Energy Reviews, 2022, 157: 112038.
|
[46] |
SANKARKUMAR R S, NATARAJAN R. Energy management techniques and topologies suitable for hybrid energy storage system powered electric vehicles: an overview[J]. International Transactions on Electrical Energy Systems, 2021, 31(4): 12819.
|
[47] |
王晓远, 高鹏, 赵玉双. 电动汽车用高功率密度电机关键技术[J]. 电工技术学报, 2015, 30(6): 53-59.
|
|
WANG X Y, GAO P, ZHAO Y S. Key technology of high power density motors in electric vehicles[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 53-59. (in Chinese)
|
[48] |
胡源, 李静, 黄旭珍. 连续极永磁直线同步电机定位力和推力波动抑制研究[J]. 电气技术, 2022, 23(9): 1-7, 92.
|
|
HU Y, LI J, HUANG X Z. Research on detent force and thrust ripple suppression of consequent-pole permanent magnet linear synchronous motor[J]. Electrical Engineering, 2022, 23(9): 1-7, 92. (in Chinese)
|
[49] |
黄辉先, 丁灿, 刘嘉婷. 基于非线性干扰观测器的一类欠驱动系统跟踪控制[J]. 控制与决策, 2019, 34(3): 549-554.
|
|
HUANG H X, DING C, LIU J T. Nonlinear disturbance observer-based control for trajectory tracking of a class of underactuated systems[J]. Control and Decision, 2019, 34(3): 549-554. (in Chinese)
|
[50] |
曾繁琦, 俞妍, 卜建国, 等. 基于有限状态机的军用起动/发电一体化混合动力车辆能量管理策略研究[J]. 科学技术与工程, 2020, 20(18): 7472-7483.
|
|
ZENG F Q, YU Y, BU J G, et al. Research on energy management strategy for military integrated starter generator hybrid vehicle based on finite state machine[J]. Science Technology and Engineering, 2020, 20(18): 7472-7483. (in Chinese)
|
[51] |
曾繁琦, 袁晓静, 王旭平, 等. 基于荷电状态惩罚函数的能量管理策略优化方法[J]. 中国机械工程, 2022, 33(7):852-857, 871.
|
|
ZENG F Q, YUAN X J, WANG X P, et al. Energy management strategy optimization method based on SOC penalty function[J]. China Mechanical Engineering, 2022, 33(7): 852-857, 871. (in Chinese)
|
[52] |
高强, 廖自力, 袁东, 等. 车载综合电力系统关键参数对系统稳定性的影响[J]. 兵工学报, 2020, 41(9): 1727-1735.
doi: 10.3969/j.issn.1000-1093.2020.09.004
|
|
GAO Q, LIAO Z L, YUAN D, et al. Effects of key parameters of integrated power system on vehicle stability[J]. Acta Armamentarii, 2020, 41(9): 1727-1735. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2020.09.004
|
[53] |
谈学超, 张军刚. 军用通信车系统功耗需求分析和电源系统设计方法研究[J]. 通信电源技术, 2011, 28(4): 47-49.
|
|
TAN X C, ZHANG J G. System power-consuming requirement analysis of military communication vehicle and design means study of power system[J]. Telecom Power Technologies, 2011, 28(4): 47-49. (in Chinese)
|
[54] |
李辉, 王震, 周挺, 等. 含同步调相机的直流受端换流站全工况下多模式协调控制策略[J]. 电工技术学报, 2020, 35(17): 3678-3690.
|
|
LI H, WANG Z, ZHOU T, et al. Multi-mode coordinated control strategy for DC receiving converter station with synchronous condenser under full operating conditions[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3678-3690. (in Chinese)
|
[55] |
ZHENG C H, ZHANG D F, XIAO Y, et al. Reinforcement learning-based energy management strategies of fuel cell hybrid vehicles with multi-objective control[J]. Journal of Power Sources, 2022, 543: 231841.
|
[56] |
TANG X L, JIA T, HU X S, et al. Naturalistic data-driven predictive energy management for plug-in hybrid electric vehicles[J]. IEEE Transactions on Transportation Electrification, 2020, 7(2): 497-508.
|
[57] |
TANG X L, CHEN J X, PU H Y, et al. Double deep reinforcement learning-based energy management for a parallel hybrid electric vehicle with engine start-stop strategy[J]. IEEE Transactions on Transportation Electrification, 2021, 8(1): 1376-1388.
|
[58] |
LI W H, CUI H, NEMETH T, et al. Deep reinforcement learning-based energy management of hybrid battery systems in electric vehicles[J]. Journal of Energy Storage, 2021, 36: 102355.
|
[59] |
QI C Y, ZHU Y W, SONG C X, et al. Hierarchical reinforcement learning based energy management strategy for hybrid electric vehicle[J]. Energy, 2022, 238: 121703.
|
[60] |
WANG Y, ROUSIS A O, STRBAC G. On microgrids and resilience: a comprehensive review on modeling and operational strategies[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110313.
|
[61] |
HUSSAIN A, BUI V H, KIM H M. Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience[J]. Applied energy, 2019, 240: 56-72.
|
[62] |
盖江涛, 生辉, 周广明, 等. 串联式混合动力履带车辆急加速工况功率平衡控制策略[J]. 兵工学报, 2021, 42(10): 2180-2188.
doi: 10.3969/j.issn.1000-1093.2021.10.013
|
|
GAI J T, SHENG H, ZHOU G M, et al. Power balance control strategy of series hybrid tracked vehicle under rapid acceleration[J]. Acta Armamentarii, 2021, 42(10): 2180-2188. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2021.10.013
|
[63] |
ZHAO J B, NETTO M, HUANG Z Y, et al. Roles of dynamic state estimation in power system modeling, monitoring and operation[J]. IEEE Transactions on Power Systems, 2020, 36(3): 2462-2472.
|
[64] |
SHI Q X, LIU W, ZENG B, et al. Enhancing distribution system resilience against extreme weather events: concept review, algorithm summary, and future vision[J]. International Journal of Electrical Power & Energy Systems, 2022, 138: 107860.
|
[65] |
REHMAN A, HASEEB K, SABA T, et al. Towards resilient and secure cooperative behavior of intelligent transportation system using sensor technologies[J]. IEEE Sensors Journal, 2022, 22(7): 7352-7360.
|
[66] |
LIU J J, GUO H Z, XIONG J Y, et al. Smart and resilient EV charging in SDN-enhanced vehicular edge computing networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 38(1): 217-228.
|
[67] |
PAUL S, DING F, UTKARSH K, et al. On vulnerability and resilience of cyber-physical power systems: a review[J]. IEEE Systems Journal, 2021, 16(2): 2367-2378.
|
[68] |
DADRAS S, DADRAS S, WINSTEAD C. Resilient control design for vehicular platooning in an adversarial environment[C]//Proceedings of the 2019 American Control Conference (ACC). Philadelphia, PA, US: IEEE, 2019: 533-538.
|
[69] |
CAI K Y, QU T, CHEN H, et al. Low-cost hybrid multisensor fusion method and implementation for production intelligent vehicles[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3520516.
|
[70] |
YUE W B, YANG Y, LI Y M, et al. Load frequency control of an armored vehicle power system with unknown disturbances based on adaptive dynamic programming[C]//Proceedings of the 2022 China Automation Congress (CAC). Xiamen, China: IEEE, 2022: 4207-4212.
|