欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2023, Vol. 44 ›› Issue (8): 2453-2464.doi: 10.12382/bgxb.2022.0300

• • 上一篇    下一篇

一种用于外场试验图像的引信炸点检测方法

周宇1, 曹荣刚1,2,3,*(), 栗苹1,3, 马啸1   

  1. 1.北京理工大学 机电学院, 北京 100081
    2.北京理工大学 唐山研究院, 河北 唐山 063611
    3.北京理工大学 机电动态控制重点实验室, 北京 100081
  • 收稿日期:2022-04-24 上线日期:2023-08-30
  • 通讯作者:
  • 基金资助:
    机电动态控制重点实验室开放课题基金项目(6142601190605)

A Fuze Burst Point Detection Method for Outfield Test Images

ZHOU Yu1, CAO Ronggang1,2,3,*(), LI Ping1,3, MA Xiao1   

  1. 1. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
    2. Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063611, Hebei, China
    3. Science and Technology on Electromechanical Dynamic Control Laboratory, Beijing Institute of Technology, Beijing 100081, China
  • Received:2022-04-24 Online:2023-08-30

摘要:

在无线电近炸引信抗干扰性能测试中,观测和识别炸点状态对引信的工作状态评估和性能改进至关重要。为此,提出一种基于深度神经网络的图像目标检测算法,用于引信炸点识别。在检测模型的结构设计及训练策略上实现以下新颖设计:模型基于高性能骨干网络ConvNeXt实现图像目标特征提取,使用密集连接跨阶段局部模块以及带通道注意力机制的多分支模块,以提升特征提取能力;使用任务解耦多检测头结构提升检测精度;在模型训练时,使用焦点损失函数作为分类和置信度的损失函数,使用完全交并比函数作为预测框回归的损失函数。研究结果表明:该检测算法在真实引信炸点图像数据集上实现平均精度为92.7%以及F1分数为87.4%的检测性能。实验结果表明,所提算法在引信炸点检测任务上性能优于现有典型检测模型。

关键词: 炸点观测, 目标检测, 深度学习, 卷积神经网络, 特征融合

Abstract:

In the anti-jamming performance test of radio proximity fuzes, the observation and recognition of the burst point state is essential for working state evaluation and performance improvement of the fuzes. Therefore, an image target detection algorithm based on the deep neural network is proposed for fuze burst point recognition. The algorithm achieves the following novel designs in the structure and training strategy of the model: The model realizes the target feature extraction based on the high-performance backbone ConvNeXt, and uses the cross stage partial structure based on dense connection and the multi-branch structure with channel attention to improve the feature extraction capability; it also applies a task-decoupled multi-detector structure to improve detection accuracy; focus loss functions are used as the loss functions of classification and confidence, and the complete intersection over union loss function is used as the loss function of prediction box regression in the model training. The proposed algorithm achieves an average precision of 92.7% and F1-score of 87.4% on the real fuze burst point image dataset. The results show the superiority of the proposed algorithm over the existing typical models in the fuze burst point detection task.

Key words: burst point observation, target detection, deep learning, convolutional neural network, feature

中图分类号: