欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2023, Vol. 44 ›› Issue (8): 2310-2318.doi: 10.12382/bgxb.2022.0302

• • 上一篇    下一篇

基于注意力机制增强残差网络的雷达信号调制类型识别

吴礼洋1, 呙鹏程2,*(), 刘超3, 李文强1   

  1. 1.空军通信士官学校, 辽宁 大连 116600
    2.95183部队, 湖南 邵东 422000
    3.95291部队, 湖南 衡阳 421000
  • 收稿日期:2022-04-25 上线日期:2023-08-30
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(61804184)

Radar Signal Modulation Type Recognition Based on Attention Mechanism Enhanced Residual Networks

WU Liyang1, GUO Pengcheng2,*(), LIU Chao3, LI Wenqiang1   

  1. 1. Air Force Communication NCO Academy, Dalian 116600, Liaoning, China
    2. Unit 95183 of PLA, Shaodong 422000, Hunan, China
    3. Unit 95291 of PLA, Hengyang 421000, Hunan, China
  • Received:2022-04-25 Online:2023-08-30

摘要:

针对情报分析中在低信噪比下雷达信号调制样式识别率较低的问题,提出基于注意力机制增强残差网络的雷达调制类型识别算法。利用平滑伪Wigner-Ville分布时频变换的强能量聚集特点将信号调制样式转化为二维时频图像;搭建2层卷积网络和6层残差块的残差网络,并在网络之间穿插加入卷积注意力机制模块,用以增强对特征的关注度,提高特征提取的有效性;将二维时频图像输入到该网络模型中实现调制类型识别。仿真实验结果表明,该算法对6类典型雷达信号调制类型能够有效提取到时频图像的特征,在信噪比0dB以上实现100%的正确率,在信噪比-10dB 下正确率依然能够保持94.2%,具有较强的识别优势。

关键词: 信号调制类型识别, 平滑伪Wigner-Ville分布, 卷积神经网络, 残差网络, 注意力机制

Abstract:

To solve the problem of low recognition rate of radar signal modulation type under the condition of low SNR in intelligence analysis, an radar signal modulation type recognition method based on attention mechanism enhanced residual networks is proposed. Firstly, drawing on the strong energy aggregation characteristics of the smooth pseudo Wigner-Ville distribution time-frequency transform, the signal modulation type is transformed into a two-dimensional time-frequency image. Then, residual networks composed of a two-layer convolution network and a six-layer residual block are built, and the convolutional block attention module is inserted between the networks to enhance the attention to features and improve the effectiveness of feature extraction. Finally, two-dimensional time-frequency images are input into the network model to realize modulation type recognition. The simulation results show that this method can effectively extract the feature of time-frequency images for six typical radar signal modulation types, and can achieve 100% accuracy above 0dB Signal-Noise Ratio, and still maintain 94.2% accuracy under -10dB Signal-Noise Ratio.

Key words: signal modulation type recognition, smooth pseudo Wigner-Ville distribution, convolutional neural network, residual network, attention mechanism

中图分类号: