[1] |
陈炜军, 邹庆, 涂卫军. 空面武器智能化发展趋势与应用[J]. 直升机技术, 2021(2):69-72.
|
|
CHEN W J, ZOU Q, TU W J. Research on intelligent development trend and application of air-to-surface weapons[J]. Helicopter Technique, 2021(2):69-72. (in Chinese)
|
[2] |
邓廷祥, 任鹏, 程甲, 等. 面向集群协同的两点相对定位技术[J]. 兵工学报, 2023, 44(增刊2):22-34.
|
|
DENG T X, REN P, CHENG J, et al. Relative positioning technology for two points based on cluster cooperative orientation[J]. Acta Armamentarii, 2023, 44(S2):22-34. (in Chinese)
doi: 10.12382/bgxb.2023.0829
|
[3] |
曹昊哲, 刘全攀. 基于半直接法的无人集群协同视觉SLAM算法[J]. 兵工学报, 2023, 44(11):3345-3358.
doi: 10.12382/bgxb.2023.0547
|
|
CAO H Z, LIU Q P. Unmanned swarm collaborative visual SLAM algorithm based on semi-direct method[J]. Acta Armamentarii, 2023, 44(11):3345-3358. (in Chinese)
doi: 10.12382/bgxb.2023.0547
|
[4] |
ZHOU Y, CHENG N, LU N, et al. Multi-UAV-aided networks:aerial-ground cooperative vehicular networking architecture[J]. IEEE Vehicular Technology Magazine, 2015, 10(4):36-44.
|
[5] |
郑磊, 陈志敏, 贾宇轩. 基于广域部署智能反射面的无人机集群跟踪方法[J]. 兵工学报, 2023, 44(6):1837-1845.
doi: 10.12382/bgxb.2022.0217
|
|
ZHENG L, CHEN Z M, JIA Y X. UAV swarm tracking method based on wide-area deployment of intelligent reflecting surfaces[J]. Acta Armamentarii, 2023, 44(6):1837-1845. (in Chinese)
doi: 10.12382/bgxb.2022.0217
|
[6] |
曹正阳, 张冰, 白屹轩, 等. GNSS/INS/VNS组合定位信息融合的多无人机协同导航方法[J]. 兵工学报, 2023, 44(增刊2):157-166.
|
|
CAO Z Y, ZHANG B, BAI Y X, et al. Multi-UAV cooperative navigation method based on fusion of GNSS/INS/VNS positioning information[J]. Acta Armamentarii, 2023, 44(S2):157-166. (in Chinese)
doi: 10.12382/bgxb.2023.0860
|
[7] |
郑壮壮, 曹万科, 邹渊, 等. 动态环境下无人地面车辆点云地图快速重定位方法[J]. 兵工学报, 2020, 41(8):1581-1589.
doi: 10.3969/j.issn.1000-1093.2020.08.013
|
|
ZHENG Z Z, CAO W K, ZOU Y, et al. Rapid localization of unmanned ground vehicles in dynamic environment using point cloud maps[J]. Acta Armamentarii, 2020, 41(8):1581-1589. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2020.08.013
|
[8] |
刘延旭. 面向无人机集群的多源融合定位关键技术研究[D]. 北京: 北京邮电大学, 2022.
|
|
LIU Y X. Research on multi-source fusion positioning towards UAV swarm[D]. Beijing: Beijing University of Posts and Telecommunications, 2022. (in Chinese)
|
[9] |
陈超. 无人集群任务分配方法研究[D]. 长沙: 国防科学技术大学, 2023.
|
|
CHEN C. Research on task assignment algorithms in unmanned swarm[D]. Changsha: National University of Defense Technology, 2023. (in Chinese)
|
[10] |
GENEVA P, ECKENHOFF K, LEE W, et al. OpenVINS:a research platform for visual inertial estimation[C]// Proceedings of IEEE International Conference on Robotics and Automation. Washington,D.C.,US: IEEE, 2020:4666-4672.
|
[11] |
MCINTIRE J P, WEBBER F C, NGUYEN D K, et al. LeapFrogging:a technique for accurate long-distance ground navigation and positioning without GPS[J]. Navigation:Journal of the Institute of Navigation, 2018, 65(1):35-47.
|
[12] |
TULLY S, KANTOR G, CHOSET H. Leap-frog path design for multi-robot cooperative localization[C]// Proceedings of Field and Service Robotics:Results of the 7th International Conference. Berlin,Heidelberg,Germany: Springer, 2010:307-317.
|
[13] |
CHOUDHARY S, CARLONE L, NIETO C, et al. Distributed map with privacy and communication constraints:lightweight algorithms and object-based models[J]. The International Journal of Robotics Research, 2017, 36(12):1286-1311.
|
[14] |
ZHANG J, KAESS M, SINGH S. On degeneracy of optimization-based state estimation problems[C]// Proceedings of 2016 IEEE International Conference on Robotics and Automation. Stockholm,Sweden: IEEE, 2016:809-816.
|
[15] |
KHATTAK S, NGUYEN H, MASCARICH F, et al. Complementary multi-modal sensor fusion for resilient robot pose estimation in subterranean environments[C]// Proceedings of 2020 International Conference on Unmanned Aircraft Systems. Athens,Greece: IEEE, 2020:1024-1029.
|
[16] |
SONG Y, GUAN M Y, TAY W P, et al. UWB/LiDAR fusion for cooperative range-only slam[C]// Proceedings of 2019 International Conference on Robotics and Automation. Montreal,QC,Canada: IEEE, 2019:6568-6574.
|
[17] |
ZHOU H, YAO Z, LU M. LiDAR/UWB fusion based SLAM with anti-degeneration capability[J]. IEEE Transactions on Vehicular Technology, 2020, 70(1):820-830.
|
[18] |
NGUYEN T M, CAO M, YUAN S, et al. Viral-fusion:a visual-inertial-ranging-lidar sensor fusion approach[J]. IEEE Transactions on Robotics, 2021, 38(2):958-977.
|
[19] |
FORSTER C, CARLONE L, DELLAERT F, et al. IMU preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation[C]// Proceedings of Robotics: Science and Systems XI. Rome,Italy: National Centre of Competence in Research Robotics, 2015.
|
[20] |
SNYDER J P. The space oblique Mercator projection[J]. Photogrammetric Enginerring Remote Sensing, 1978, 44(5):585-596.
|
[21] |
DELLAERT F. Factor graphs and GTSAM:a hands-on introduction[R]. Atalanta,GA, US: Georgia Institute of Technology, 2012.
|
[22] |
CHEN K, LOPEZ B T, AGHA-MOHAMMADI A, et al. Direct lidar odometry:fast localization with dense point clouds[J]. IEEE Robotics and Automation Letters, 2022, 7(2):2000-2007.
|
[23] |
ZHANG J, SINGH S. LOAM:LiDAR odometry and mapping in real-time[C]// Proceedings of Robotics: Science and Systems.Berkeley,CA,US:[s.n.], 2014, 35(1/2/3):1-9.
|
[24] |
SHAN T X, ENGLOT B. LeGO-LOAM:lightweight and ground-optimized lidar odometry and mapping on variable terrain[C]// Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid,Spain: IEEE, 2018:4758-4765.
|
[25] |
XU W, CAI Y X, HE D J, et al. FAST-LIO2:Fast direct LiDAR-inertial odometry[J]. IEEE Transactions on Robotics, 2022, 38(4):2053-2073.
|
[26] |
SHAN T, ENGLOT B, MEYERS D, et al. LIO-SAM:tightly-coupled lidar inertial odometry via smoothing and mapping[C]// Proceedings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas,NV,US: IEEE, 2020:5135-5142.
|